Code-mixing is increasingly prevalent in interactions between humans and large language models, yet existing work often reduces it to a translation or convertibility problem, making it difficult to assess whether a model's switching behavior is context-appropriate and aligned with human conventions. We introduce ChiEngMixBench, the first benchmark designed to evaluate code-mixing ability in authentic community contexts, built upon a general construction pipeline that enables scalable dataset development across domains and bilingual pairs. ChiEngMixBench formulates code-mixing as a cognitive alignment problem, characterized by two complementary signals: Spontaneity and Naturalness. Empirical evaluation shows that our metrics can systematically distinguish code-mixing performance across models. Beyond benchmarking, we further uncover an implicitly emergent Terminology Layering Strategy, a phenomenon consistent with the Matrix Language Frame (MLF) theory, indicating structured cognitive alignment between multilingual large language models and human communication.
Despite state-of-the-art vision-language models (VLMs) have demonstrated strong reasoning capabilities, their performance in multilingual mathematical reasoning remains underexplored, particularly when compared to human performance. To bridge this gap, we introduce M3Kang, the first massively multilingual, multimodal mathematical reasoning dataset for VLMs. It is derived from the Kangaroo Math Competition, the world's largest mathematics contest, which annually engages over six million participants under the age of 18 across more than 90 countries. M3Kang includes 1,747 unique multiple-choice problems organized by grade-level difficulty, with translations into 108 culturally diverse languages, some of them including diagrams essential for solving them. Using this dataset, we conduct extensive benchmarking on both closed- and open-source SOTA models. We observe that, despite recent advances, models still struggle with basic math and diagram-based reasoning, with performance scaling with language presence and model size, but not with grade level. We also find that multilingual techniques can be effectively extended to the multimodal setting, resulting in significant improvements over baseline approaches. Our analysis also incorporates performance data from over 68,000 students, enabling direct comparison with human performance. We are open-sourcing M3Kang, including the English-only subset M2Kang, along with the framework and codebase used to construct the dataset.
Large Language Models (LLMs) excel in general tasks but often struggle with hallucinations when handling domain-specific or institutional knowledge absent from their pre-training. We present an offline response-based knowledge distillation method that develops high-accuracy specialized assistants under constrained hardware resources. We evaluate three distinct data strategies: general domain adaptation (15,000 lines), unstructured knowledge injection (2,000 lines), and a context-aware synthetic dataset (500 lines) generated by a teacher model. To minimize computational costs, we utilize the Unsloth library to optimize the Qwen-2.5-7B student model, reducing NVIDIA A100 GPU memory requirements from 40 GB to 16 GB. Experimental results demonstrate that while larger unstructured datasets suffer from persistent hallucinations, the 500-line context-aware dataset achieves a 96.7% accuracy rate and robust rejection capability. These findings validate the LIMA hypothesis, showing that data quality and structural alignment are more critical than quantity for domain adaptation in low-resource settings.
Language diffusion models aim to improve sampling speed and coherence over autoregressive LLMs. We introduce Neural Flow Diffusion Models for language generation, an extension of NFDM that enables the straightforward application of continuous diffusion models to discrete state spaces. NFDM learns a multivariate forward process from the data, ensuring that the forward process and generative trajectory are a good fit for language modeling. Our model substantially reduces the likelihood gap with autoregressive models of the same size, while achieving sample quality comparable to that of previous latent diffusion models.
Large language models (LLMs) are typically personalized via prompt engineering or parameter-efficient fine-tuning such as LoRA. However, writing style can be difficult to distill into a single prompt, and LoRA fine-tuning requires computationally intensive training and infrastructure. We investigate a possible lightweight alternative: steering a frozen LLM with n-gram style priors injected in logit space at decoding time. We train an n-gram model on stylistically distinct corpora -- including Don Quixote, CNN/DailyMail news headlines, and arXiv abstracts -- constructing an interpolated 1-to-3-gram prior over next-token probabilities. During generation we modify the LLM's logits by adding a weighted sum of style log-probabilities from each n-gram order that matches the current context, scaled by a control parameter lambda in [0, 1]. We sweep lambda and style corpora and report style perplexity under the n-gram model, base-model perplexity as a proxy for fluency, Jensen-Shannon (JS) divergence between the original and steered token distributions, and token-overlap statistics. On TinyLlama-1.1B we identify a single narrow regime (for the Don Quixote corpus at lambda=0.1) where style perplexity improves by 24.7% and base-model perplexity improves by 51.4% relative to the frozen model. Outside this regime, and for multi-author corpora such as CNN/DailyMail and arXiv abstracts, even small nonzero lambda values generally result in worse style and fluency, and larger lambda values lead to collapse with extreme perplexities and incoherent text. Logit-space injection of n-gram style priors provides lightweight, tunable style control, but it is fragile: it operates effectively only within a narrow range of low lambda values and is consistently outperformed by prompting and LoRA.
Multimodal foundation models that integrate audio, vision, and language achieve strong performance on reasoning and generation tasks, yet their robustness to adversarial manipulation remains poorly understood. We study a realistic and underexplored threat model: untargeted, audio-only adversarial attacks on trimodal audio-video-language models. We analyze six complementary attack objectives that target different stages of multimodal processing, including audio encoder representations, cross-modal attention, hidden states, and output likelihoods. Across three state-of-the-art models and multiple benchmarks, we show that audio-only perturbations can induce severe multimodal failures, achieving up to 96% attack success rate. We further show that attacks can be successful at low perceptual distortions (LPIPS <= 0.08, SI-SNR >= 0) and benefit more from extended optimization than increased data scale. Transferability across models and encoders remains limited, while speech recognition systems such as Whisper primarily respond to perturbation magnitude, achieving >97% attack success under severe distortion. These results expose a previously overlooked single-modality attack surface in multimodal systems and motivate defenses that enforce cross-modal consistency.
HIV is a retrovirus that attacks the human immune system and can lead to death without proper treatment. In collaboration with the WHO and Wits University, we study how to improve the efficiency of HIV testing with the goal of eventual deployment, directly supporting progress toward UN Sustainable Development Goal 3.3. While prior work has demonstrated the promise of intelligent algorithms for sequential, network-based HIV testing, existing approaches rely on assumptions that are impractical in our real-world implementations. Here, we study sequential testing on incrementally revealed disease networks and introduce Policy-Embedded Graph Expansion (PEGE), a novel framework that directly embeds a generative distribution over graph expansions into the decision-making policy rather than attempting explicit topological reconstruction. We further propose Dynamics-Driven Branching (DDB), a diffusion-based graph expansion model that supports decision making in PEGE and is designed for data-limited settings where forest structures arise naturally, as in our real-world referral process. Experiments on real HIV transmission networks show that the combined approach (PEGE + DDB) consistently outperforms existing baselines (e.g., 13% improvement in discounted reward and 9% more HIV detections with 25% of the population tested) and explore key tradeoffs that drive decision quality.
The use of algorithms is increasing across various fields such as healthcare, justice, finance, and education. This growth has significantly accelerated with the advent of Artificial Intelligence (AI) technologies based on Large Language Models (LLMs) since 2022. This expansion presents substantial challenges related to accountability, ethics, and transparency. This article explores the potential of the Digital Object Identifier (DOI) to identify algorithms, aiming to enhance accountability, transparency, and reliability in their development and application, particularly in AI agents and multimodal LLMs. The use of DOIs facilitates tracking the origin of algorithms, enables audits, prevents biases, promotes research reproducibility, and strengthens ethical considerations. The discussion addresses the challenges and solutions associated with maintaining algorithms identified by DOI, their application in API security, and the proposal of a cryptographic authentication protocol.
Personalized speech enhancement (PSE) has shown convincing results when it comes to extracting a known target voice among interfering ones. The corresponding systems usually incorporate a representation of the target voice within the enhancement system, which is extracted from an enrollment clip of the target voice with upstream models. Those models are generally heavy as the speaker embedding's quality directly affects PSE performances. Yet, embeddings generated beforehand cannot account for the variations of the target voice during inference time. In this paper, we propose to perform on-thefly refinement of the speaker embedding using a tiny speaker encoder. We first introduce a novel contrastive knowledge distillation methodology in order to train a 150k-parameter encoder from complex embeddings. We then use this encoder within the enhancement system during inference and show that the proposed method greatly improves PSE performances while maintaining a low computational load.
We introduce a quantitative method to compare arbitrary pairs of graph centrality measures, based on the ordering of vertices induced by them. The proposed method is conceptually simple, mathematically elegant, and allows for a quantitative restatement of many conjectures that were previously cumbersome to formalize. Moreover, it produces an approximation scheme useful for network scientists. We explore some of these uses and formulate new conjectures that are of independent interest.
Mixed-motive multi-agent settings are rife with persistent free-riding because individual effort benefits all members equally, yet each member bears the full cost of their own contribution. Classical work by Holmström established that under pure self-interest, Nash equilibrium is universal shirking. While i* represents teams as composite actors, it lacks scalable computational mechanisms for analyzing how collective action problems emerge and resolve in coopetitive settings. This technical report extends computational foundations for strategic coopetition to team-level dynamics, building on companion work formalizing interdependence/complementarity (arXiv:2510.18802) and trust dynamics (arXiv:2510.24909). We develop loyalty-moderated utility functions with two mechanisms: loyalty benefit (welfare internalization plus intrinsic contribution satisfaction) and cost tolerance (reduced effort burden for loyal members). We integrate i* structural dependencies through dependency-weighted team cohesion, connecting member incentives to team-level positioning. The framework applies to both human teams (loyalty as psychological identification) and multi-agent systems (alignment coefficients and adjusted cost functions). Experimental validation across 3,125 configurations demonstrates robust loyalty effects (15.04x median effort differentiation). All six behavioral targets achieve thresholds: free-riding baseline (96.5%), loyalty monotonicity (100%), effort differentiation (100%), team size effect (100%), mechanism synergy (99.5%), and bounded outcomes (100%). Empirical validation using published Apache HTTP Server (1995-2023) case study achieves 60/60 points, reproducing contribution patterns across formation, growth, maturation, and governance phases. Statistical significance confirmed at p<0.001, Cohen's d=0.71.
VIBETENSOR is an open-source research system software stack for deep learning, generated by LLM-powered coding agents under high-level human guidance. In this paper, "fully generated" refers to code provenance: implementation changes were produced and applied as agent-proposed diffs; validation relied on agent-run builds, tests, and differential checks, without per-change manual diff review. It implements a PyTorch-style eager tensor library with a C++20 core (CPU+CUDA), a torch-like Python overlay via nanobind, and an experimental this http URL interface. Unlike thin bindings, VIBETENSOR includes its own tensor/storage system, schema-lite dispatcher, reverse-mode autograd, CUDA runtime (streams/events/graphs), a stream-ordered caching allocator with diagnostics, and a stable C ABI for dynamically loaded operator plugins. We view this release as a milestone for AI-assisted software engineering: it shows coding agents can generate a coherent deep learning runtime spanning language bindings down to CUDA memory management, validated primarily by builds and tests. We describe the architecture, summarize the workflow used to produce and validate the system, and evaluate the artifact. We report repository scale and test-suite composition, and summarize reproducible microbenchmarks from an accompanying AI-generated kernel suite, including fused attention versus PyTorch SDPA/FlashAttention. We also report end-to-end training sanity checks on 3 small workloads (sequence reversal, ViT, miniGPT) on NVIDIA H100 (Hopper, SM90) and Blackwell-class GPUs; multi-GPU results are Blackwell-only and use an optional CUTLASS-based ring-allreduce plugin gated on CUDA 13+ and sm103a toolchain support. Finally, we discuss failure modes in generated system software, including a "Frankenstein" composition effect where locally correct subsystems interact to yield globally suboptimal performance.
Test or prove? These two approaches to software verification have long been presented as opposites. One is dynamic, the other static: a test executes the program, a proof only analyzes the program text. A different perspective is emerging, in which testing and proving are complementary rather than competing techniques for producing software of verified quality. Work performed over the past few years and reviewed here develops this complementarity by taking advantage of Design by Contract, as available in Eiffel, and exploiting a feature of modern program-proving tools based on ``Satisfiability Modulo Theories'' (SMT): counterexample generation. A counterexample is an input combination that makes the program fail. If we are trying to prove a program correct, we hope not to find any. One can, however, apply counterexample generation to incorrect programs, as a tool for automatic test generation. We can also introduce faults into a correct program and turn the counterexamples into an automatically generated regression test suite with full coverage. Additionally, we can use these mechanisms to help produce program fixes for incorrect programs, with a guarantee that the fixes are correct. All three applications, leveraging on the mechanisms of Eiffel and Design by Contract, hold significant promise to address some of the challenges of program testing, software maintenance and Automatic Program Repair.
Respiratory monitoring is an extremely important task in modern medical services. Due to its significant advantages, e.g., non-contact, radar-based respiratory monitoring has attracted widespread attention from both academia and industry. Unfortunately, though it can achieve high monitoring accuracy, consumer electronics-grade radar data inevitably contains User-sensitive Identity Information (USI), which may be maliciously used and further lead to privacy leakage. To track these challenges, by variational mode decomposition (VMD) and adversarial loss-based encryption, we propose a novel Trusted Respiratory Monitoring paradigm, Tru-RM, to perform automated respiratory monitoring through radio signals while effectively anonymizing USI. The key enablers of Tru-RM are Attribute Feature Decoupling (AFD), Flexible Perturbation Encryptor (FPE), and robust Perturbation Tolerable Network (PTN) used for attribute decomposition, identity encryption, and perturbed respiratory monitoring, respectively. Specifically, AFD is designed to decompose the raw radar signals into the universal respiratory component, the personal difference component, and other unrelated components. Then, by using large noise to drown out the other unrelated components, and the phase noise algorithm with a learning intensity parameter to eliminate USI in the personal difference component, FPE is designed to achieve complete user identity information encryption without affecting respiratory features. Finally, by designing the transferred generalized domain-independent network, PTN is employed to accurately detect respiration when waveforms change significantly. Extensive experiments based on various detection distances, respiratory patterns, and durations demonstrate the superior performance of Tru-RM on strong anonymity of USI, and high detection accuracy of perturbed respiratory waveforms.
This paper presents a novel and scalable screw-theoretic multibody synthesis framework for PDE-based dynamic modeling of serial robotic manipulators with an arbitrary number of flexible links in three-dimensional space. The proposed approach systematically constructs screw-theoretic PDE models for individual flexible links and rigorously enforces holonomic joint constraints through interaction forces. The dynamics of each link are formulated using a set of dual screws expressed in body-fixed coordinates: one describing the motion of the body-fixed frame relative to the inertial frame, a second relating the body-fixed frame to the undeformed configuration, and a third capturing elastic deformations. By expressing the system energy and applying variational principles, the governing dynamics of each link had been previously derived in a unified manner. Synthesizing the individual link models yields an infinitely scalable multibody representation capable of capturing both local (subsystem-level) and global (system-level) dynamics. The framework explicitly recovers all dynamic states, including the motion of each body-fixed frame and the distributed deformation fields of the flexible links. For computational tractability and mathematical rigor, the resulting governing equations are formulated as a semi-explicit index-1 differential-algebraic system. Furthermore, by applying separation of variables, the PDE model is recast as an abstract Cauchy problem, and well-posedness of the resulting system is established.
Topological transitivity is a fundamental notion in topological dynamics and is widely regarded as a basic indicator of global dynamical complexity. For general cellular automata, topological transitivity is known to be undecidable. By contrast, positive decidability results have been established for one-dimensional group cellular automata over abelian groups, while the extension to higher dimensions and to non-abelian groups has remained an open problem. In this work, we settle this problem by proving that topological transitivity is decidable for the class of $d$-dimensional ($d\geq 1$) group cellular automata over arbitrary finite groups. Our approach combines a decomposition technique for group cellular automata, reducing the problem to the analysis of simpler components, with an extension of several results from the existing literature in the one-dimensional setting. As a consequence of our results, and exploiting known equivalences among dynamical properties for group cellular automata, we also obtain the decidability of several related notions, including total transitivity, topological mixing and weak mixing, weak and strong ergodic mixing, and ergodicity.
Learning DAG structures from purely observational data remains a long-standing challenge across scientific domains. An emerging line of research leverages the score of the data distribution to initially identify a topological order of the underlying DAG via leaf node detection and subsequently performs edge pruning for graph recovery. This paper extends the score matching framework for causal discovery, which is originally designated for continuous data, and introduces a novel leaf discriminant criterion based on the discrete score function. Through simulated and real-world experiments, we demonstrate that our theory enables accurate inference of true causal orders from observed discrete data and the identified ordering can significantly boost the accuracy of existing causal discovery baselines on nearly all of the settings.
We present a method for relighting 3D reconstructions of large room-scale environments. Existing solutions for 3D scene relighting often require solving under-determined or ill-conditioned inverse rendering problems, and are as such unable to produce high-quality results on complex real-world scenes. Though recent progress in using generative image and video diffusion models for relighting has been promising, these techniques are either limited to 2D image and video relighting or 3D relighting of individual objects. Our approach enables controllable 3D relighting of room-scale scenes by distilling the outputs of a video-to-video relighting diffusion model into a 3D reconstruction. This side-steps the need to solve a difficult inverse rendering problem, and results in a flexible system that can relight 3D reconstructions of complex real-world scenes. We validate our approach on both synthetic and real-world datasets to show that it can faithfully render novel views of scenes under new lighting conditions.
This technical report describes our submission to the ICME 2025 audio encoder challenge. Our submitted system is built on BEATs, a masked speech token prediction based audio encoder. We extend the BEATs model using 74,000 hours of data derived from various speech, music, and sound corpora and scale its architecture upto 300 million parameters. We experiment with speech-heavy and balanced pre-training mixtures to study the impact of different domains on final performance. Our submitted system consists of an ensemble of the Dasheng 1.2 billion model with two custom scaled-up BEATs models trained on the aforementioned pre-training data mixtures. We also propose a simple ensembling technique that retains the best capabilities of constituent models and surpasses both the baseline and Dasheng 1.2B. For open science, we publicly release our trained checkpoints via huggingface at this https URL and this https URL.
Strategic decision-making in multi-agent settings is a key challenge for large language models (LLMs), particularly when coordination and negotiation must unfold over extended conversations. While recent work has explored the use of LLMs in isolated decision tasks, little attention has been given to optimizing long-term objectives through dialogue. We introduce \textbf{GameTalk}, a framework for training LLMs to make strategic decisions via multi-turn interactions. Unlike prior work that focuses on single-turn objectives or static action prediction, we train LLMs to optimize a global objective across full conversations. We achieve this by adapting fine-tuning methods like GRPO, DPO, and STaR to incorporate reward signals that depend on the entire interaction. We evaluate this approach on a suite of increasingly complex games, designed to stress different aspects of reasoning, coordination, and opponent modeling. Our results show that GameTalk significantly outperforms untrained models, especially under reward shaping, with DPO consistently yielding the strongest gains. These findings position conversational fine-tuning as a promising path for LLMs to reason, negotiate, and act in interactive environments.
Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, making them promising tools in both high- and low-resource languages. One particularly valuable use case is generating synthetic samples that can be used to train smaller models in low-resource scenarios where human-labelled data is scarce. In this work, we investigate whether these synthetic data generation capabilities can serve as a form of distillation, producing smaller models that perform on par with or even better than massive LLMs across languages and tasks. To this end, we use a state-of-the-art multilingual LLM to generate synthetic datasets covering 11 languages and 4 classification tasks. These datasets are then used to train smaller models via fine-tuning or instruction tuning, or as synthetic in-context examples for compact LLMs. Our experiments show that even small amounts of synthetic data enable smaller models to outperform the large generator itself, particularly in low-resource languages. Overall, the results suggest that LLMs are best utilised as generators (teachers) rather than classifiers, producing data that empowers smaller and more efficient multilingual models.
Multi-agent systems powered by large language models (LLMs) are transforming enterprise automation, yet systematic evaluation methodologies for assessing tool-use reliability remain underdeveloped. We introduce a comprehensive diagnostic framework that leverages big data analytics to evaluate procedural reliability in intelligent agent systems, addressing critical needs for SME-centric deployment in privacy-sensitive environments. Our approach features a 12-category error taxonomy capturing failure modes across tool initialization, parameter handling, execution, and result interpretation. Through systematic evaluation of 1,980 deterministic test instances spanning both open-weight models (Qwen2.5 series, Functionary) and proprietary alternatives (GPT-4, Claude 3.5/3.7) across diverse edge hardware configurations, we identify actionable reliability thresholds for production deployment. Our analysis reveals that procedural reliability, particularly tool initialization failures, constitutes the primary bottleneck for smaller models, while qwen2.5:32b achieves flawless performance matching GPT-4.1. The framework demonstrates that mid-sized models (qwen2.5:14b) offer practical accuracy-efficiency trade-offs on commodity hardware (96.6\% success rate, 7.3 s latency), enabling cost-effective intelligent agent deployment for resource-constrained organizations. This work establishes foundational infrastructure for systematic reliability evaluation of tool-augmented multi-agent AI systems.
Contemporary automated scientific discovery has focused on agents for generating scientific experiments, while systems that perform higher-level scientific activities such as theory building remain underexplored. In this work, we formulate the problem of synthesizing theories consisting of qualitative and quantitative laws from large corpora of scientific literature. We study theory generation at scale, using 13.7k source papers to synthesize 2.9k theories, examining how generation using literature-grounding versus parametric knowledge, and accuracy-focused versus novelty-focused generation objectives change theory properties. Our experiments show that, compared to using parametric LLM memory for generation, our literature-supported method creates theories that are significantly better at both matching existing evidence and at predicting future results from 4.6k subsequently-written papers
Modern buildings are increasingly interconnected with occupancy, heating, ventilation, and air-conditioning (HVAC) systems, distributed energy resources (DERs), and power grids. Modeling, control, and optimization of such multi-domain systems play a critical role in achieving building-sector decarbonization. However, most existing tools lack scalability and physical consistency for addressing these complex, multi-scale ecosystem problems. To bridge this gap, this study presents BESTOpt, a modular, physics-informed machine learning (PIML) framework that unifies building applications, including benchmarking, evaluation, diagnostics, control, optimization, and performance simulation. The framework adopts a cluster-domain-system/building-component hierarchy and a standardized state-action-disturbance-observation data typology. By embedding physics priors into data-driven modules, BESTOpt improves model accuracy and physical consistency under unseen conditions. Case studies on single-building and cluster scenarios demonstrate its capability for multi-level centralized and decentralized control. Looking ahead, BESTOpt lays the foundation for an open, extensible platform that accelerates interdisciplinary research toward smart, resilient, and decarbonized building ecosystems.
Agentic AI pipelines suffer from a hidden inefficiency: they frequently reconstruct identical intermediate logic, such as metric normalization or chart scaffolding, even when the user's natural language phrasing is entirely novel. Conventional boundary caching fails to capture this inefficiency because it treats inference as a monolithic black box. We introduce SemanticALLI, a pipeline-aware architecture within Alli (PMG's marketing intelligence platform), designed to operationalize redundant reasoning. By decomposing generation into Analytic Intent Resolution (AIR) and Visualization Synthesis (VS), SemanticALLI elevates structured intermediate representations (IRs) to first-class, cacheable artifacts. The impact of caching within the agentic loop is substantial. In our evaluation, baseline monolithic caching caps at a 38.7% hit rate due to linguistic variance. In contrast, our structured approach allows for an additional stage, the Visualization Synthesis stage, to achieve an 83.10% hit rate, bypassing 4,023 LLM calls with a median latency of just 2.66 ms. This internal reuse reduces total token consumption, offering a practical lesson for AI system design: even when users rarely repeat themselves, the pipeline often does, at stable, structured checkpoints where caching is most reliable.
Agent-based modeling (ABM) has emerged as an indispensable methodology for studying complex adaptive systems across the natural and social sciences. However, Python-based ABM frameworks face a fundamental tension between the accessibility that has made Python dominant in scientific computing and the performance requirements of large-scale simulations. This paper introduces AMBER, a framework that resolves this tension through a novel architectural approach: replacing the conventional object-per-agent representation with columnar state management using the Polars DataFrame library. We analyze the computational characteristics of both paradigms, present the architectural design of AMBER including its core abstractions, spatial environments, experiment management, and optimization capabilities. Empirical evaluation on three canonical benchmarks demonstrates that AMBER achieves speedups of 1.2x to 93x depending on workload characteristics, with the greatest advantages for models dominated by population-wide attribute operations. Memory profiling reveals 30-50% reduction in peak usage compared to object-oriented frameworks. Our results establish columnar state management as a viable architectural foundation for high-performance ABM in interpreted languages.
General Matrix Multiplication (GEMM) is the cornerstone of Deep Learning and HPC workloads; accordingly, academia and industry have heavily optimized this kernel. Modern platforms with matrix multiplication accelerators exhibit high FLOP/Byte machine balance, which makes implementing optimal matrix multiplication challenging. On modern CPU platforms with matrix engines, state-of-the-art vendor libraries tune input tensor layouts, parallelization schemes, and cache blocking to minimize data movement across the memory hierarchy and maximize throughput. However, the best settings for these parameters depend strongly on the target platform (number of cores, memory hierarchy, cache sizes) and on the shapes of the matrices, making exhaustive tuning infeasible; in practice this leads to performance "glass jaws". In this work we revisit space filling curves (SFC) to alleviate the problem of this cumbersome tuning. SFC convert multi-dimensional coordinates (e.g. 2D) into a single dimension (1D), keeping nearby points in the high-dimensional space close in the 1D order. We partition the Matrix Multiplication computation space using recent advancements in generalized SFC (Generalized Hilbert Curves), and we obtain platform-oblivious and shape-oblivious matrix-multiplication schemes that exhibit inherently high degree of data locality. Furthermore, we extend the SFC-based work partitioning to implement Communication-Avoiding (CA) algorithms that replicate the input tensors and provably minimize communication/data-movement on the critical path. The integration of CA-algorithms is seamless and yields compact code (~30 LOC), yet it achieves state-of-the-art results on multiple CPU platforms, outperforming vendor libraries by up to 2x(geometric-mean speedup) for a range of GEMM shapes.
Recent foundational video-to-video diffusion models have achieved impressive results in editing user provided videos by modifying appearance, motion, or camera movement. However, real-world video editing is often an iterative process, where users refine results across multiple rounds of interaction. In this multi-turn setting, current video editors struggle to maintain cross-consistency across sequential edits. In this work, we tackle, for the first time, the problem of cross-consistency in multi-turn video editing and introduce Memory-V2V, a simple, yet effective framework that augments existing video-to-video models with explicit memory. Given an external cache of previously edited videos, Memory-V2V employs accurate retrieval and dynamic tokenization strategies to condition the current editing step on prior results. To further mitigate redundancy and computational overhead, we propose a learnable token compressor within the DiT backbone that compresses redundant conditioning tokens while preserving essential visual cues, achieving an overall speedup of 30%. We validate Memory-V2V on challenging tasks including video novel view synthesis and text-conditioned long video editing. Extensive experiments show that Memory-V2V produces videos that are significantly more cross-consistent with minimal computational overhead, while maintaining or even improving task-specific performance over state-of-the-art baselines. Project page: this https URL
With the rise of decentralized finance, fiat-to-cryptocurrency exchange platforms have become popular entry points into the cryptocurrency ecosystem. However, these platforms frequently fail to ensure adequate privacy protection, as evidenced by real-world breaches that exposed personally identifiable information (PII) and crypto addresses. Such leaks enable adversaries to link real-world identities to cryptocurrency transactions, undermining the presumed anonymity of cryptocurrency use. We propose FC-GUARD, a privacy-preserving exchange system designed to preserve user anonymity without compromising regulatory compliance in the exchange of fiat currency for cryptocurrencies. Leveraging verifiable credentials and zero-knowledge proof techniques, FC-GUARD enables fiat-to-cryptocurrency exchanges without revealing users' PII or fiat account details. This breaks the linkage between users' real-world identities and their cryptocurrency addresses, thereby upholding anonymity, a fundamental expectation in the cryptocurrency ecosystem. In addition, FC-GUARD complies with key regulations over cryptocurrency usage, such as know-your-customer requirements and auditability for tax reporting obligations by integrating a lawful de-anonymization mechanism that allows the auditing authority to identify misbehaving users. This ensures regulatory compliance while defaulting to privacy protection. We implement our system on both desktop and mobile platforms, and our evaluation shows its feasibility for practical deployment.
Federated learning enables collaborative model training across geographically distributed medical centers while preserving data privacy. However, domain shifts and heterogeneity in data often lead to a degradation in model performance. Medical imaging applications are particularly affected by variations in acquisition protocols, scanner types, and patient populations. To address these issues, we introduce Federated Template and Task Learning (FeTTL), a novel framework designed to harmonize multi-institutional medical imaging data in federated environments. FeTTL learns a global template together with a task model to align data distributions among clients. We evaluated FeTTL on two challenging and diverse multi-institutional medical imaging tasks: retinal fundus optical disc segmentation and histopathological metastasis classification. Experimental results show that FeTTL significantly outperforms the state-of-the-art federated learning baselines (p-values <0.002) for optical disc segmentation and classification of metastases from multi-institutional data. Our experiments further highlight the importance of jointly learning the template and the task. These findings suggest that FeTTL offers a principled and extensible solution for mitigating distribution shifts in federated learning, supporting robust model deployment in real-world, multi-institutional environments.
We introduce DNIPRO, a novel longitudinal corpus of 246K news articles documenting the Russo-Ukrainian war from Feb 2022 to Aug 2024, spanning eleven media outlets across five nation states (Russia, Ukraine, U.S., U.K., and China) and three languages (English, Russian, and Mandarin Chinese). This multilingual resource features consistent and comprehensive metadata, and multiple types of annotation with rigorous human evaluations for downstream tasks relevant to systematic transnational analyses of contentious wartime discourse. DNIPRO's distinctive value lies in its inclusion of competing geopolitical perspectives, making it uniquely suited for studying narrative divergence, media framing, and information warfare. To demonstrate its utility, we include use case experiments using stance detection, sentiment analysis, topical framing, and contradiction analysis of major conflict events within the larger war. Our explorations reveal how outlets construct competing realities, with coverage exhibiting polarized interpretations that reflect geopolitical interests. Beyond supporting computational journalism research, DNIPRO provides a foundational resource for understanding how conflicting narratives emerge and evolve across global information ecosystems.
Research in AI4Science has shown promise in many science applications, including polymer design. However, current LLMs prove ineffective on this problem space because: (i) most models lack polymer-specific knowledge (ii) existing aligned models lack coverage of knowledge and capabilities relevant to polymer design. Addressing this, we introduce PolyBench, a large scale training and test benchmark dataset of more than 125K polymer design related tasks, leveraging a knowledge base of 13M+ data points obtained from experimental and synthetic sources to ensure broad coverage of polymers and their properties. For effective alignment using PolyBench, we introduce a knowledge-augmented reasoning distillation method that augments this dataset with structured CoT. Furthermore, tasks in PolyBench are organized from simple to complex analytical reasoning problems, enabling generalization tests and diagnostic probes across the problem space. Experiments show that small language models (SLMs), of 7B to 14B parameters, trained on PolyBench data outperform similar sized models, and even closed source frontier LLMs on PolyBench test dataset while demonstrating gains on other polymer benchmarks as well.
Large language models (LLMs) enable rapid and consistent automated evaluation of open-ended exam responses, including dimensions of content and argumentation that have traditionally required human judgment. This is particularly important in cases where a large amount of exams need to be graded in a limited time frame, such as nation-wide graduation exams in various countries. Here, we examine the applicability of automated scoring on two large datasets of trial exam essays of two full national cohorts from Estonia. We operationalize the official curriculum-based rubric and compare LLM and statistical natural language processing (NLP) based assessments with human panel scores. The results show that automated scoring can achieve performance comparable to that of human raters and tends to fall within the human scoring range. We also evaluate bias, prompt injection risks, and LLMs as essay writers. These findings demonstrate that a principled, rubric-driven, human-in-the-loop scoring pipeline is viable for high-stakes writing assessment, particularly relevant for digitally advanced societies like Estonia, which is about to adapt a fully electronic examination system. Furthermore, the system produces fine-grained subscore profiles that can be used to generate systematic, personalized feedback for instruction and exam preparation. The study provides evidence that LLM-assisted assessment can be implemented at a national scale, even in a small-language context, while maintaining human oversight and compliance with emerging educational and regulatory standards.
Data centers are growing rapidly, creating the pressing need for the development of critical infrastructure build out to support these resource-intensive large loads. Their immense consumption of electricity and, often, freshwater, continues to stress an already constrained and aging power grid and water resources. This paper presents a comprehensive modeling approach to determine the optimal locations to construct such facilities by quantifying their resource use and minimizing associated costs. The interdisciplinary modeling approach incorporates a number of factors including the power grid, telecommunications, climate, water use, and collocated generation potential. This work establishes the base model whose functionality is shown through several test cases focusing on carbon-free generation collocation on a county-level in the United States. The results suggest that while capital costs are the biggest driver, having a longer future outlook and allowing more variable generation collocation influences the model to choose sites with higher renewable potential.
Minors are at risk of myriad harms online, yet online dating romance scams are seldom considered one of them. While research of romance scams in Western countries finds victims to predominantly be middle-age, it is unknown if minors in geographic regions with cultural norms around teenage marriage are uniquely susceptible to online dating romance scams. We present an interview study with 16 victims of online dating romance scams in Iran who were minors when scammed. Findings show that, with westernized dating apps banned in Iran, scammers find teenage victims through messaging platforms tethered to local neighborhoods, offering relief for parental pressures around finding a marital partner and academic performance. Using threats, lies, and exploitation of emotional attachment lacking from their families, scammers pressured minors into financial and sexual favors. The study demonstrates how local cultural context should be foregrounded in future research on, and solutions for, technology-mediated harm against minors. Content Warning: This paper discusses sexual abuse.
Immersive applications such as eXtended Reality (XR), cloud gaming, and real-time video streaming are central to the vision of 6G networks. These applications require not only low latency and high data rates, but also consistent and high-quality User Experience (UX). Traditional rate allocation and congestion control mechanisms in wireless networks treat users uniformly based on channel conditions, rely only on network-centric Key Performance Indicators (KPIs), and ignore the content diversity, which can lead to inefficient resource utilization and degraded UX. In this paper, we introduce the concept of Multi-User Content Diversity, which recognizes that different users concurrently consume media with varying complexity, and therefore have different bitrate requirements to achieve satisfactory UX. We propose multiple different frameworks that exploit multi-user content diversity and lead to overall network-wide gains in terms of UX. For each framework, we demonstrate the required information exchange between Application Servers (ASs), Application Clients (ACs), and the network, and the algorithms that run in each of these components to optimize a network-wide UXbased objective. Simulation results demonstrate that exploiting multi-user content diversity leads to significant gains in UX capacity, UX fairness, and network utilization, when compared to conventional rate control methods. These findings highlight the potential of content-aware networking as a key enabler for emerging wireless systems.
College students experience many stressors, resulting in high levels of anxiety and depression. Wearable technology provides unobtrusive sensor data that can be used for the early detection of mental illness. However, current research is limited concerning the variety of psychological instruments administered, physiological modalities, and time series parameters. In this research, we collect the Student Mental and Environmental Health (StudentMEH) Fitbit dataset from students at our institution during the pandemic. We provide a comprehensive assessment of the ability of predictive machine learning models to screen for depression, anxiety, and stress using different Fitbit modalities. Our findings indicate potential in physiological modalities such as heart rate and sleep to screen for mental illness with the F1 scores as high as 0.79 for anxiety, the former modality reaching 0.77 for stress screening, and the latter modality achieving 0.78 for depression. This research highlights the potential of wearable devices to support continuous mental health monitoring, the importance of identifying best data aggregation levels and appropriate modalities for screening for different mental ailments.
This paper presents the DMV-AVP System, a distributed simulation of Multi-Vehicle Autonomous Valet Parking (AVP). The system was implemented as an application of the Distributed Multi-Vehicle Architecture (DMAVA) for synchronized multi-host execution. Most existing simulation approaches rely on centralized or non-distributed designs that constrain scalability and limit fully autonomous control. This work introduces two modules built on top of the DMAVA: 1) a Multi-Vehicle AVP Node that performs state-based coordination, queuing, and reservation management across multiple vehicles, and 2) a Unity-Integrated YOLOv5 Parking Spot Detection Module that provides real-time, vision-based perception within AWSIM Labs. Both modules integrate seamlessly with the DMAVA and extend it specifically for multi-vehicle AVP operation, supported by a Zenoh-based communication layer that ensures low-latency topic synchronization and coordinated behavior across hosts. Experiments conducted on two- and three-host configurations demonstrate deterministic coordination, conflict-free parking behavior, and scalable performance across distributed Autoware instances. The results confirm that the proposed Distributed Multi-Vehicle AVP System supports cooperative AVP simulation and establishes a foundation for future real-world and hardware-in-the-loop validation. Demo videos and source code are available at this https URL
We propose a novel training objective for GPs constructed using lower-dimensional linear projections of the data, referred to as \emph{projected likelihood} (PL). We provide a closed-form expression for the information loss related to the PL and empirically show that it can be reduced with random projections on the unit sphere. We show the superiority of the PL, in terms of accuracy and computational efficiency, over the exact GP training and the variational free energy approach to sparse GPs over different optimisers, kernels and datasets of moderately large sizes.
Foundation models are used for many real-world applications involving language generation from temporally-ordered multimodal events. In this work, we study the ability of models to identify the most important sub-events in a video, which is a fundamental prerequisite for narrating or summarizing multimodal events. Specifically, we focus on football games and evaluate models on their ability to distinguish between important and non-important sub-events in a game. To this end, we construct a new dataset by leveraging human preferences for importance implicit in football game highlight reels, without any additional annotation costs. Using our dataset, which we will publicly release to the community, we compare several state-of-the-art multimodal models and show that they are not far from chance level performance. Analyses of models beyond standard evaluation metrics reveal their tendency to rely on a single dominant modality and their ineffectiveness in synthesizing necessary information from multiple sources. Our findings underline the importance of modular architectures that can handle sample-level heterogeneity in multimodal data and the need for complementary training procedures that can maximize cross-modal synergy.
Simulating and validating coordination among multiple autonomous vehicles (AVs) is a challenging task as most existing simulation architectures are limited to single-vehicle operation or rely on centralized control. This paper presents a Distributed Multi-AV Architecture (DMAVA) that enables synchronized, real-time autonomous driving simulation across multiple physical hosts. Each vehicle runs its own complete AV stack and operates independently from other AVs. The vehicles in the simulation maintain synchronized coordination through a low-latency data-centric communication layer. The proposed system integrates ROS 2 Humble, Autoware Universe, AWSIM Labs, and Zenoh to support concurrent execution of multiple Autoware stacks within a shared Unity-based environment. Experiments conducted on multiple-host configurations demonstrate stable localization, reliable inter-host communication, and fully synchronized closed-loop control. The DMAVA also serves as a foundation for Multi-Vehicle Autonomous Valet Parking, demonstrating its extensibility toward higher-level cooperative autonomy. Demo videos and source code are available at: this https URL.
With the growing ubiquity of multi-core architectures, concurrent systems have become essential but increasingly prone to complex issues such as data races and deadlocks. While modern issue-tracking systems facilitate the reporting of such problems, labeling concurrency-related bug reports remains a labor-intensive and error-prone task. This paper presents a linguistic-pattern-based framework for automatically identifying concurrency bug reports. We derive 58 distinct linguistic patterns from 730 manually labeled concurrency bug reports, organized across four levels: word-level (keywords), phrase-level (n-grams), sentence-level (semantic), and bug report-level (contextual). To assess their effectiveness, we evaluate four complementary approaches-matching, learning, prompt-based, and fine-tuning-spanning traditional machine learning, large language models (LLMs), and pre-trained language models (PLMs). Our comprehensive evaluation on 12 large-scale open-source projects (10,920 issue reports from GitHub and Jira) demonstrates that fine-tuning PLMs with linguistic-pattern-enriched inputs achieves the best performance, reaching a precision of 91% on GitHub and 93% on Jira, and maintaining strong precision on post cut-off data (91%). The contributions of this work include: (1) a comprehensive taxonomy of linguistic patterns for concurrency bugs, (2) a novel fine-tuning strategy that integrates domain-specific linguistic knowledge into PLMs, and (3) a curated, labeled dataset to support reproducible research. Together, these advances provide a foundation for improving the automation, precision, and interpretability of concurrency bug classification.
Data science agents promise to accelerate discovery and insight-generation by turning data into executable analyses and findings. Yet existing data science benchmarks fall short due to fragmented evaluation interfaces that make cross-benchmark comparison difficult, narrow task coverage and a lack of rigorous data grounding. In particular, we show that a substantial portion of tasks in current benchmarks can be solved without using the actual data. To address these limitations, we introduce DSGym, a standardized framework for evaluating and training data science agents in self-contained execution environments. Unlike static benchmarks, DSGym provides a modular architecture that makes it easy to add tasks, agent scaffolds, and tools, positioning it as a live, extensible testbed. We curate DSGym-Tasks, a holistic task suite that standardizes and refines existing benchmarks via quality and shortcut solvability filtering. We further expand coverage with (1) DSBio: expert-derived bioinformatics tasks grounded in literature and (2) DSPredict: challenging prediction tasks spanning domains such as computer vision, molecular prediction, and single-cell perturbation. Beyond evaluation, DSGym enables agent training via execution-verified data synthesis pipeline. As a case study, we build a 2,000-example training set and trained a 4B model in DSGym that outperforms GPT-4o on standardized analysis benchmarks. Overall, DSGym enables rigorous end-to-end measurement of whether agents can plan, implement, and validate data analyses in realistic scientific context.
Art technological investigations of historical panel paintings rely on acquiring multi-modal image data, including visual light photography, infrared reflectography, ultraviolet fluorescence photography, x-radiography, and macro photography. For a comprehensive analysis, the multi-modal images require pixel-wise alignment, which is still often performed manually. Multi-modal image registration can reduce this laborious manual work, is substantially faster, and enables higher precision. Due to varying image resolutions, huge image sizes, non-rigid distortions, and modality-dependent image content, registration is challenging. Therefore, we propose a coarse-to-fine non-rigid multi-modal registration method efficiently relying on sparse keypoints and thin-plate-splines. Historical paintings exhibit a fine crack pattern, called craquelure, on the paint layer, which is captured by all image systems and is well-suited as a feature for registration. In our one-stage non-rigid registration approach, we employ a convolutional neural network for joint keypoint detection and description based on the craquelure and a graph neural network for descriptor matching in a patch-based manner, and filter matches based on homography reprojection errors in local areas. For coarse-to-fine registration, we introduce a novel multi-level keypoint refinement approach to register mixed-resolution images up to the highest resolution. We created a multi-modal dataset of panel paintings with a high number of keypoint annotations, and a large test set comprising five multi-modal domains and varying image resolutions. The ablation study demonstrates the effectiveness of all modules of our refinement method. Our proposed approaches achieve the best registration results compared to competing keypoint and dense matching methods and refinement methods.
This study investigates regional bias in large language models (LLMs), an emerging concern in AI fairness and global representation. We evaluate ten prominent LLMs: GPT-3.5, GPT-4o, Gemini 1.5 Flash, Gemini 1.0 Pro, Claude 3 Opus, Claude 3.5 Sonnet, Llama 3, Gemma 7B, Mistral 7B, and Vicuna-13B using a dataset of 100 carefully designed prompts that probe forced-choice decisions between regions under contextually neutral scenarios. We introduce FAZE, a prompt-based evaluation framework that measures regional bias on a 10-point scale, where higher scores indicate a stronger tendency to favor specific regions. Experimental results reveal substantial variation in bias levels across models, with GPT-3.5 exhibiting the highest bias score (9.5) and Claude 3.5 Sonnet scoring the lowest (2.5). These findings indicate that regional bias can meaningfully undermine the reliability, fairness, and inclusivity of LLM outputs in real-world, cross-cultural applications. This work contributes to AI fairness research by highlighting the importance of inclusive evaluation frameworks and systematic approaches for identifying and mitigating geographic biases in language models.
Although boosting software development performance, large language model (LLM)-powered code generation introduces intellectual property and data security risks rooted in the fact that a service provider (cloud) observes a client's prompts and generated code, which can be proprietary in commercial systems. To mitigate this problem, we propose NOIR, the first framework to protect the client's prompts and generated code from the cloud. NOIR uses an encoder and a decoder at the client to encode and send the prompts' embeddings to the cloud to get enriched embeddings from the LLM, which are then decoded to generate the code locally at the client. Since the cloud can use the embeddings to infer the prompt and the generated code, NOIR introduces a new mechanism to achieve indistinguishability, a local differential privacy protection at the token embedding level, in the vocabulary used in the prompts and code, and a data-independent and randomized tokenizer on the client side. These components effectively defend against reconstruction and frequency analysis attacks by an honest-but-curious cloud. Extensive analysis and results using open-source LLMs show that NOIR significantly outperforms existing baselines on benchmarks, including the Evalplus (MBPP and HumanEval, Pass@1 of 76.7 and 77.4), and BigCodeBench (Pass@1 of 38.7, only a 1.77% drop from the original LLM) under strong privacy against attacks.
Humans act via a nuanced process that depends both on rational deliberation and also on identity and contextual factors. In this work, we study how large language models (LLMs) can simulate human action in the context of social dilemma games. While prior work has focused on "steering" (weak binding) of chat models to simulate personas, we analyze here how deep binding of base models with extended backstories leads to more faithful replication of identity-based behaviors. Our study has these findings: simulation fidelity vs human studies is improved by conditioning base LMs with rich context of narrative identities and checking consistency using instruction-tuned models. We show that LLMs can also model contextual factors such as time (year that a study was performed), question framing, and participant pool effects. LLMs, therefore, allow us to explore the details that affect human studies but which are often omitted from experiment descriptions, and which hamper accurate replication.
Large Language Model (LLM)-powered web GUI agents are increasingly automating everyday online tasks. Despite their popularity, little is known about how users' preferences and values impact agents' reasoning and behavior. In this work, we investigate how both explicit and implicit user preferences, as well as the underlying user values, influence agent decision-making and action trajectories. We built a controlled testbed of 14 common interactive web tasks, spanning shopping, travel, dining, and housing, each replicated from real websites and integrated with a low-fidelity LLM-based recommender system. We injected 12 human preferences and values as personas into four state-of-the-art agents and systematically analyzed their task behaviors. Our results show that preference and value-infused prompts consistently guided agents toward outcomes that reflected these preferences and values. While the absence of user preference or value guidance led agents to exhibit a strong efficiency bias and employ shortest-path strategies, their presence steered agents' behavior trajectories through the greater use of corresponding filters and interactive web features. Despite their influence, dominant interface cues, such as discounts and advertisements, frequently overrode these effects, shortening the agents' action trajectories and inducing rationalizations that masked rather than reflected value-consistent reasoning. The contributions of this paper are twofold: (1) an open-source testbed for studying the influence of values in agent behaviors, and (2) an empirical investigation of how user preferences and values shape web agent behaviors.
The software engineering research community is productive, yet it faces a constellation of challenges: swamped review processes, metric-driven incentives, distorted publication practices, and increasing pressures from AI, scale, and outright scams. These issues are often treated in isolation, yet they arise from deep structural dynamics within the research ecosystem itself and distract us from the larger role of research in society. Meaningful progress requires a holistic system-level view. We sketch such a framework drawing on ideas from complex systems, ecosystems, and theory of change. Reframing SE's challenges through this lens reveals non-linear feedback loops that sustain current dysfunctions, and it helps to identify leverage points for reform. These are less a matter of isolated fixes and more a matter of exploring coordinated sets of fixes that operate across the SE ecosystem
This paper provides a fresh view of the neural network (NN) data flow problem, i.e., identifying the NN connections that are most important for the performance of the full model, through the lens of graph theory. Understanding the NN data flow provides a tool for symbolic NN analysis, e.g.,~robustness analysis or model repair. Unlike the standard approach to NN data flow analysis, which is based on information theory, we employ the notion of graph curvature, specifically Ollivier-Ricci curvature (ORC). The ORC has been successfully used to identify important graph edges in various domains such as road traffic analysis, biological and social networks. In particular, edges with negative ORC are considered bottlenecks and as such are critical to the graph's overall connectivity, whereas positive-ORC edges are not essential. We use this intuition for the case of NNs as well: we 1)~construct a graph induced by the NN structure and introduce the notion of neural curvature (NC) based on the ORC; 2)~calculate curvatures based on activation patterns for a set of input examples; 3)~aim to demonstrate that NC can indeed be used to rank edges according to their importance for the overall NN functionality. We evaluate our method through pruning experiments and show that removing negative-ORC edges quickly degrades the overall NN performance, whereas positive-ORC edges have little impact. The proposed method is evaluated on a variety of models trained on three image datasets, namely MNIST, CIFAR-10 and CIFAR-100. The results indicate that our method can identify a larger number of unimportant edges as compared to state-of-the-art pruning methods.
Game-theoretic models and solution concepts provide rigorous tools for predicting collective behavior in multi-agent systems. In practice, however, different agents may rely on different game-theoretic models to design their strategies. As a result, when these heterogeneous models interact, the realized outcome can deviate substantially from the outcome each agent expects based on its own local model. In this work, we introduce the game-to-real gap, a new metric that quantifies the impact of such model misspecification in multi-agent environments. The game-to-real gap is defined as the difference between the utility an agent actually obtains in the multi-agent environment (where other agents may have misspecified models) and the utility it expects under its own game model. Focusing on quadratic network games, we show that misspecifications in either (i) the external shock or (ii) the player interaction network can lead to arbitrarily large game-to-real gaps. We further develop novel network centrality measures that allow exact evaluation of this gap in quadratic network games. Our analysis reveals that standard network centrality measures fail to capture the effects of model misspecification, underscoring the need for new structural metrics that account for this limitation. Finally, through illustrative numerical experiments, we show that existing centrality measures in network games may provide a counterintuitive understanding of the impact of model misspecification.
Community detection (CD) on signed networks is crucial for understanding how positive and negative relations jointly shape network structure. However, existing CD methods often yield inconsistent communities due to noisy or conflicting edge signs. In this paper, we propose ReCon, a model-agnostic post-processing framework that progressively refines community structures through four iterative steps: (1) structural refinement, (2) boundary refinement, (3) contrastive learning, and (4) clustering. Extensive experiments on eighteen synthetic and four real-world networks using four CD methods demonstrate that ReCon consistently enhances community detection accuracy, serving as an effective and easily integrable solution for reliable CD across diverse network properties.
On-demand Polymer discovery is essential for various industries, ranging from biomedical to reinforcement materials. Experiments with polymers have a long trial-and-error process, leading to long procedures and extensive resources. For these processes, machine learning has accelerated scientific discovery at the property prediction and latent space search fronts. However, laboratory researchers cannot readily access codes and these models to extract individual structures and properties due to infrastructure limitations. We present a closed-loop polymer structure-property predictor integrated in a terminal for early-stage polymer discovery. The framework is powered by LLM reasoning to provide users with property prediction, property-guided polymer structure generation, and structure modification capabilities. The SMILES sequences are guided by the synthetic accessibility score and the synthetic complexity score (SC Score) to ensure that polymer generation is as close as possible to synthetically accessible monomer-level structures. This framework addresses the challenge of generating novel polymer structures for laboratory researchers, thereby providing computational insights into polymer research.
Multimodal language models (MLMs) perform well on semantic vision-language tasks but fail at spatial reasoning that requires adopting another agent's visual perspective. These errors reflect a persistent egocentric bias and raise questions about whether current models support allocentric reasoning. Inspired by human spatial cognition, we introduce perspective tokens, specialized embeddings that encode orientation through either (1) embodied body-keypoint cues or (2) abstract representations supporting mental rotation. Integrating these tokens into LLaVA-1.5-13B yields performance on level-2 visual perspective-taking tasks. Across synthetic and naturalistic benchmarks (Isle Bricks V2, COCO, 3DSRBench), perspective tokens improve accuracy, with rotation-based tokens generalizing to non-human reference agents. Representational analyses reveal that fine-tuning enhances latent orientation sensitivity already present in the base model, suggesting that MLMs contain precursors of allocentric reasoning but lack appropriate internal structure. Overall, embedding cognitively grounded spatial structure directly into token space provides a lightweight, model-agnostic mechanism for perspective-taking and more human-like spatial reasoning.
Few-Shot Anomaly Detection (FSAD) has emerged as a critical paradigm for identifying irregularities using scarce normal references. While recent methods have integrated textual semantics to complement visual data, they predominantly rely on features pre-trained on natural scenes, thereby neglecting the granular, domain-specific semantics essential for industrial inspection. Furthermore, prevalent fusion strategies often resort to superficial concatenation, failing to address the inherent semantic misalignment between visual and textual modalities, which compromises robustness against cross-modal interference. To bridge these gaps, this study proposes VTFusion, a vision-text multimodal fusion framework tailored for FSAD. The framework rests on two core designs. First, adaptive feature extractors for both image and text modalities are introduced to learn task-specific representations, bridging the domain gap between pre-trained models and industrial data; this is further augmented by generating diverse synthetic anomalies to enhance feature discriminability. Second, a dedicated multimodal prediction fusion module is developed, comprising a fusion block that facilitates rich cross-modal information exchange and a segmentation network that generates refined pixel-level anomaly maps under multimodal guidance. VTFusion significantly advances FSAD performance, achieving image-level AUROCs of 96.8% and 86.2% in the 2-shot scenario on the MVTec AD and VisA datasets, respectively. Furthermore, VTFusion achieves an AUPRO of 93.5% on a real-world dataset of industrial automotive plastic parts introduced in this paper, further demonstrating its practical applicability in demanding industrial scenarios.
While the filtered-x normalized least mean square (FxNLMS) algorithm is widely applied due to its simple structure and easy implementation for active noise control system, it faces two critical limitations: the fixed step-size causes a trade-off between convergence rate and steady-state residual error, and its performance deteriorates significantly in impulsive noise environments. To address the step-size constraint issue, we propose the switched \mbox{step-size} FxNLMS (SSS-FxNLMS) algorithm. Specifically, we derive the \mbox{mean-square} deviation (MSD) trend of the FxNLMS algorithm, and then by comparing the MSD trends corresponding to different \mbox{step-sizes}, the optimal step-size for each iteration is selected. Furthermore, to enhance the algorithm's robustness in impulsive noise scenarios, we integrate a robust strategy into the SSS-FxNLMS algorithm, resulting in a robust variant of it. The effectiveness and superiority of the proposed algorithms has been confirmed through computer simulations in different noise scenarios.
Large language models exhibit strong multilingual capabilities, yet significant performance gaps persist between dominant and non-dominant languages. Prior work attributes this gap to imbalances between shared and language-specific neurons in multilingual representations. We propose Cross-Lingual Activation Steering (CLAS), a training-free inference-time intervention that selectively modulates neuron activations. We evaluate CLAS on classification and generation benchmarks, achieving average improvements of 2.3% (Acc.) and 3.4% (F1) respectively, while maintaining high-resource language performance. We discover that effective transfer operates through functional divergence rather than strict alignment; performance gains correlate with increased language cluster separation. Our results demonstrate that targeted activation steering can unlock latent multilingual capacity in existing models without modification to model weights.
With the advent of agentic AI, Software Engineering is transforming to a new era dubbed Software Engineering 3.0. Software project management (SPM) must also evolve with such transformations to boost successful project completion, while keeping humans at the heart of it. Building on our preliminary ideas of "agentic SPM", and supporting literature, we present our vision of an "Agentic Project Manager (PM)" as a multi-agent system for SPM 3.0. They will work like a "junior project manager", or an "intern project manager" collaboratively with software teams. We introduce four working modes, with varying autonomy levels to choose from, based on the SPM task. This addresses concerns with ethics, accountability, and trust related to agentic PMs. We also share insights on human PM role evolution and new skill requirements as a "strategic leader" and a "coach" for humans and agents. While creating the foundation for agentic SPM research, we present a research agenda for the wider research community.
This paper presents a terrestrial GNSS-based orbit and clock estimation framework for lunar navigation satellites. To enable high-precision estimation under the low-observability conditions encountered at lunar distances, we develop a stochastic-cloning UD-factorized filter and delayed-state smoother that provide enhanced numerical stability when processing precise time-differenced carrier phase (TDCP) measurements. A comprehensive dynamics and measurement model is formulated, explicitly accounting for relativistic coupling between orbital and clock states, lunar time-scale transformations, and signal propagation delays including ionospheric, plasmaspheric, and Shapiro effects. The proposed approach is evaluated using high-fidelity Monte-Carlo simulations incorporating realistic multi-constellation GNSS geometry, broadcast ephemeris errors, lunar satellite dynamics, and ionospheric and plasmaspheric delay computed from empirical electron density models. Simulation results demonstrate that combining ionosphere-free pseudorange and TDCP measurements achieves meter-level orbit accuracy and sub-millimeter-per-second velocity accuracy, satisfying the stringent signal-in-space error requirements of future Lunar Augmented Navigation Services (LANS).
Referring Expression Segmentation (RES) is a core vision-language segmentation task that enables pixel-level understanding of targets via free-form linguistic expressions, supporting critical applications such as human-robot interaction and augmented reality. Despite the progress of Multimodal Large Language Model (MLLM)-based approaches, existing RES methods still suffer from two key limitations: first, the coarse bounding boxes from MLLMs lead to redundant or non-discriminative point prompts; second, the prevalent reliance on textual coordinate reasoning is unreliable, as it fails to distinguish targets from visually similar distractors. To address these issues, we propose \textbf{\model}, a novel RES framework integrating \textbf{E}ntropy-\textbf{B}ased Point \textbf{D}iscovery (\textbf{EBD}) and \textbf{V}ision-\textbf{B}ased \textbf{R}easoning (\textbf{VBR}). Specifically, EBD identifies high-information candidate points by modeling spatial uncertainty within coarse bounding boxes, treating point selection as an information maximization process. VBR verifies point correctness through joint visual-semantic alignment, abandoning text-only coordinate inference for more robust validation. Built on these components, \model implements a coarse-to-fine workflow: bounding box initialization, entropy-guided point discovery, vision-based validation, and mask decoding. Extensive evaluations on four benchmark datasets (RefCOCO, RefCOCO+, RefCOCOg, and ReasonSeg) demonstrate that \model achieves new state-of-the-art performance across all four benchmarks, highlighting its effectiveness in generating accurate and semantically grounded segmentation masks with minimal prompts.
Trustworthy clinical summarization requires not only fluent generation but also transparency about where each statement comes from. We propose a training-free framework for generation-time source attribution that leverages decoder attentions to directly cite supporting text spans or images, overcoming the limitations of post-hoc or retraining-based methods. We introduce two strategies for multimodal attribution: a raw image mode, which directly uses image patch attentions, and a caption-as-span mode, which substitutes images with generated captions to enable purely text-based alignment. Evaluations on two representative domains: clinician-patient dialogues (CliConSummation) and radiology reports (MIMIC-CXR), show that our approach consistently outperforms embedding-based and self-attribution baselines, improving both text-level and multimodal attribution accuracy (e.g., +15% F1 over embedding baselines). Caption-based attribution achieves competitive performance with raw-image attention while being more lightweight and practical. These findings highlight attention-guided attribution as a promising step toward interpretable and deployable clinical summarization systems.
Algorithmic audits are essential tools for examining systems for properties required by regulators or desired by operators. Current audits of large language models (LLMs) primarily rely on black-box evaluations that assess model behavior only through input-output testing. These methods are limited to tests constructed in the input space, often generated by heuristics. In addition, many socially relevant model properties (e.g., gender bias) are abstract and difficult to measure through text-based inputs alone. To address these limitations, we propose a white-box sensitivity auditing framework for LLMs that leverages activation steering to conduct more rigorous assessments through model internals. Our auditing method conducts internal sensitivity tests by manipulating key concepts relevant to the model's intended function for the task. We demonstrate its application to bias audits in four simulated high-stakes LLM decision tasks. Our method consistently reveals substantial dependence on protected attributes in model predictions, even in settings where standard black-box evaluations suggest little or no bias. Our code is openly available at this https URL
We study a structured bi-level optimization problem where the upper-level objective is a smooth function and the lower-level problem is policy optimization in a Markov decision process (MDP). The upper-level decision variable parameterizes the reward of the lower-level MDP, and the upper-level objective depends on the optimal induced policy. Existing methods for bi-level optimization and RL often require second-order information, impose strong regularization at the lower level, or inefficiently use samples through nested-loop procedures. In this work, we propose a single-loop, first-order actor-critic algorithm that optimizes the bi-level objective via a penalty-based reformulation. We introduce into the lower-level RL objective an attenuating entropy regularization, which enables asymptotically unbiased upper-level hyper-gradient estimation without solving the unregularized RL problem exactly. We establish the finite-time and finite-sample convergence of the proposed algorithm to a stationary point of the original, unregularized bi-level optimization problem through a novel lower-level residual analysis under a special type of Polyak-Lojasiewicz condition. We validate the performance of our method through experiments on a GridWorld goal position problem and on happy tweet generation through reinforcement learning from human feedback (RLHF).
Real-world visual question answering (VQA) is often context-dependent: an image-question pair may be under-specified, such that the correct answer depends on external information that is not observable in the image. In such cases, directly answering can lead to confident but incorrect predictions. We propose CoA(Clarify-or-Answer), an ask-or-answer agent that separately models the decision to ask or answer, and what to ask if needed. CoA first determines whether clarification is necessary; if so, it asks a single focused question and then incorporates the response to produce the final answer. We introduce CONTEXTCLARIFY with a set of ambiguous VQA questions and the contrast set that is non-ambiguous. We further introduce GRPO-CR (Clarification Reasoning), a reinforcement learning approach that optimizes clarification question generation with multiple reward signals encouraging well-formed, focused, non-trivial questions that resolve ambiguity. Across three VLLMs and three datasets, CoA achieves consistent improvements at both the module and system levels, improving end-to-end VQA accuracy by an average of +15.3 points (83%) over prompting-based baselines
Reinforcement Learning from Human Feedback (RLHF) and its variants have emerged as the dominant approaches for aligning Large Language Models with human intent. While empirically effective, the theoretical generalization properties of these methods in high-dimensional settings remain to be explored. To this end, we build the generalization theory on RLHF of LLMs under the linear reward model, through the framework of algorithmic stability. In contrast to the existing works built upon the consistency of maximum likelihood estimations on reward model, our analysis is presented under an end-to-end learning framework, which is consistent with practice. Concretely, we prove that under a key \textbf{feature coverage} condition, the empirical optima of policy model have a generalization bound of order $\mathcal{O}(n^{-\frac{1}{2}})$. Moreover, the results can be extrapolated to parameters obtained by gradient-based learning algorithms, i.e., Gradient Ascent (GA) and Stochastic Gradient Ascent (SGA). Thus, we argue that our results provide new theoretical evidence for the empirically observed generalization of LLMs after RLHF.
Coverage Path Planning (CPP) is a fundamental capability for agricultural robots; however, existing solutions often overlook energy constraints, resulting in incomplete operations in large-scale or resource-limited environments. This paper proposes an energy-aware CPP framework grounded in Soft Actor-Critic (SAC) reinforcement learning, designed for grid-based environments with obstacles and charging stations. To enable robust and adaptive decision-making under energy limitations, the framework integrates Convolutional Neural Networks (CNNs) for spatial feature extraction and Long Short-Term Memory (LSTM) networks for temporal dynamics. A dedicated reward function is designed to jointly optimize coverage efficiency, energy consumption, and return-to-base constraints. Experimental results demonstrate that the proposed approach consistently achieves over 90% coverage while ensuring energy safety, outperforming traditional heuristic algorithms such as Rapidly-exploring Random Tree (RRT), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) baselines by 13.4-19.5% in coverage and reducing constraint violations by 59.9-88.3%. These findings validate the proposed SAC-based framework as an effective and scalable solution for energy-constrained CPP in agricultural robotics.
Rare-event prediction is critical in domains such as healthcare, finance, reliability engineering, customer support, aviation safety, where positive outcomes are infrequent yet potentially catastrophic. Extreme class imbalance biases conventional models toward majority-class predictions, limiting recall, calibration, and operational usefulness. We propose LPCORP (Low-Prevalence CORrector for Prediction)*, a two-stage framework that combines reasoningenhanced prediction with confidence-based outcome correction. A reasoning model first produces enriched predictions from narrative inputs, after which a lightweight logistic-regression classifier evaluates and selectively corrects these outputs to mitigate prevalence-driven bias. We evaluate LPCORP on real-world datasets from medical and consumer service domains. The results show that this method transforms a highly imbalanced setting into a well-balanced one while preserving the original number of samples and without applying any resampling strategies. Test-set evaluation demonstrates substantially improved performance, particularly in precision, which is a known weakness in low-prevalence data. We further provide a costreduction analysis comparing the expenses associated with rare-event damage control without preventive measures to those incurred when low-cost, prediction-based preventive interventions are applied that showed more than 50% reduction in some cases. * Patent pending: U.S. Provisional 63/933,518, filed 8 December 2025.
Large language models (LLMs) make next-token predictions based on clues present in their context, such as semantic descriptions and in-context examples. Yet, elucidating which prior tokens most strongly influence a given prediction remains challenging due to the proliferation of layers and attention heads in modern architectures. We propose Jacobian Scopes, a suite of gradient-based, token-level causal attribution methods for interpreting LLM predictions. By analyzing the linearized relations of final hidden state with respect to inputs, Jacobian Scopes quantify how input tokens influence a model's prediction. We introduce three variants - Semantic, Fisher, and Temperature Scopes - which respectively target sensitivity of specific logits, the full predictive distribution, and model confidence (inverse temperature). Through case studies spanning instruction understanding, translation and in-context learning (ICL), we uncover interesting findings, such as when Jacobian Scopes point to implicit political biases. We believe that our proposed methods also shed light on recently debated mechanisms underlying in-context time-series forecasting. Our code and interactive demonstrations are publicly available at this https URL.
Move\,37 marks one of the major breakthroughs in AI in terms of its ability to surpass human expertise and discover novel strategies beyond the traditional game play in the strategic two-player board game of Go. The domains of Natural Language Processing, Computer Vision, and Robotics have also undergone a similar phenomenon through the advent of large foundational models in the form of Large Language Models (LLMs), Vision Language Models (VLMs) and Vision Language Action models (VLAs), respectively. In this paper, we investigate the current state of Artificial Intelligence for Database Systems research (AI4DB), and assess how far AI4DB systems are from achieving their own Move\,37 moment. We envision a Generative Database Agent (Gen-DBA, for short) as the pathway to achieving Move\,37 for database systems that will bring generative reasoning and creativity into the realm of database learning tasks. This vision paper explores this direction by presenting the recipe for building Gen-DBA that encompasses but is not limited to a Transformer backbone, a hardware-grounded tokenization mechanism, a two-stage Goal-Directed Next Token Prediction training paradigm, and a generative inference process.
Vapnik--Chervonenkis' theorem is a seminal result in machine learning. It establishes sufficient conditions for empirical probabilities to converge to theoretical probabilities, uniformly over families of events. It also provides an estimate for the rate of such uniform convergence. We revisit the probabilistic component of the classical argument. Instead of applying Hoeffding's inequality at the final step, we use a normal approximation with explicit Berry--Esseen error control. This yields a moderate-deviation sharpening of the usual VC estimate, with an additional factor of order $(\varepsilon\sqrt{n})^{-1}$ in the leading exponential term when $\varepsilon\sqrt{n}$ is large.
The study of \textit{regret minimization in fixed-price bilateral trade} has received considerable attention in recent research. Previous works [CCC+24a, CCC+24b, AFF24, BCCF24, CJLZ25, LCM25a, GDFS25] have acquired a thorough understanding of the problem, except for determining the tight regret bound for GBB semi-feedback fixed-price mechanisms under adversarial values. In this paper, we resolve this open question by devising an $\widetilde{O}(T^{2 / 3})$-regret mechanism, matching the $\Omega(T^{2 / 3})$ lower bound from [CJLZ25] up to polylogarithmic factors.
Deep convolutional neural networks can use hierarchical information to progressively extract structural information to recover high-quality images. However, preserving the effectiveness of the obtained structural information is important in image super-resolution. In this paper, we propose a cosine network for image super-resolution (CSRNet) by improving a network architecture and optimizing the training strategy. To extract complementary homologous structural information, odd and even heterogeneous blocks are designed to enlarge the architectural differences and improve the performance of image super-resolution. Combining linear and non-linear structural information can overcome the drawback of homologous information and enhance the robustness of the obtained structural information in image super-resolution. Taking into account the local minimum of gradient descent, a cosine annealing mechanism is used to optimize the training procedure by performing warm restarts and adjusting the learning rate. Experimental results illustrate that the proposed CSRNet is competitive with state-of-the-art methods in image super-resolution.
Difficulty replicating baselines, high computational costs, and required domain expertise create persistent barriers to clinical AI research. To address these challenges, we introduce PyHealth 2.0, an enhanced clinical deep learning toolkit that enables predictive modeling in as few as 7 lines of code. PyHealth 2.0 offers three key contributions: (1) a comprehensive toolkit addressing reproducibility and compatibility challenges by unifying 15+ datasets, 20+ clinical tasks, 25+ models, 5+ interpretability methods, and uncertainty quantification including conformal prediction within a single framework that supports diverse clinical data modalities - signals, imaging, and electronic health records - with translation of 5+ medical coding standards; (2) accessibility-focused design accommodating multimodal data and diverse computational resources with up to 39x faster processing and 20x lower memory usage, enabling work from 16GB laptops to production systems; and (3) an active open-source community of 400+ members lowering domain expertise barriers through extensive documentation, reproducible research contributions, and collaborations with academic health systems and industry partners, including multi-language support via RHealth. PyHealth 2.0 establishes an open-source foundation and community advancing accessible, reproducible healthcare AI. Available at pip install pyhealth.
This paper investigates the design and analysis of a novel grid-forming (GFM) control method for grid-connected converters (GCCs). The core novelty lies in a virtual flux observer-based synchronization and load angle control method. The terminal voltage of the converter is directly regulated to provide voltage-source behavior. The control parameters are designed for decoupling and pole placement. The proposed method exhibits strong robustness in stability and dynamical performance across varying and uncertain grid strengths. The robust control performance of the proposed method is first demonstrated by small-signal analysis, then validated by experiments on a 20 kVA power conversion system.
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
We present RENEW, a global path planner for Autonomous Surface Vehicle (ASV) in dynamic environments with external disturbances (e.g., water currents). RENEW introduces a unified risk- and energy-aware strategy that ensures safety by dynamically identifying non-navigable regions and enforcing adaptive safety constraints. Inspired by maritime contingency planning, it employs a best-effort strategy to maintain control under adverse conditions. The hierarchical architecture combines high-level constrained triangulation for topological diversity with low-level trajectory optimization within safe corridors. Validated with real-world ocean data, RENEW is the first framework to jointly address adaptive non-navigability and topological path diversity for robust maritime navigation.
Designing experiments that systematically gather data from complex physical systems is central to accelerating scientific discovery. While Bayesian experimental design (BED) provides a principled, information-based framework that integrates experimental planning with probabilistic inference, the selection of utility functions in BED is a long-standing and active topic, where different criteria emphasize different notions of information. Although Kullback--Leibler (KL) divergence has been one of the most common choices, recent studies have proposed Wasserstein distance as an alternative. In this work, we first employ a toy example to illustrate an issue of Wasserstein distance - the value of Wasserstein distance of a fixed-shape posterior depends on the relative position of its main mass within the support and can exhibit false rewards unrelated to information gain, especially with a non-informative prior (e.g., uniform distribution). We then further provide a systematic comparison between these two criteria through a classical source inversion problem in the BED literature, revealing that the KL divergence tends to lead to faster convergence in the absence of model discrepancy, while Wasserstein metrics provide more robust sequential BED results if model discrepancy is non-negligible. These findings clarify the trade-offs between KL divergence and Wasserstein metrics for the utility function and provide guidelines for selecting suitable criteria in practical BED applications.
We investigate two important tasks in odor-related property modeling: Vapor Pressure (VP) and Odor Threshold (OP). To evaluate the model's out-of-distribution (OOD) capability, we adopt the Bemis-Murcko scaffold split. In terms of features, we introduce the rich A20/E17 molecular graph features (20-dimensional atom features + 17-dimensional bond features) and systematically compare GINE and PNA backbones. The results show: for VP, PNA with a simple regression head achieves Val MSE $\approx$ 0.21 (normalized space); for the OP single task under the same scaffold split, using A20/E17 with robust training (Huber/winsor) achieves Val MSE $\approx$ 0.60-0.61. For multitask training, we propose a **"safe multitask"** approach: VP as the primary task and OP as the auxiliary task, using delayed activation + gradient clipping + small weight, which avoids harming the primary task and simultaneously yields the best VP generalization performance. This paper provides complete reproducible experiments, ablation studies, and error-similarity analysis while discussing the impact of data noise and method limitations.
Infrared small target detection (IRSTD) is critical for applications like remote sensing and surveillance, which aims to identify small, low-contrast targets against complex backgrounds. However, existing methods often struggle with inadequate joint modeling of local-global features (harming target-background discrimination) or feature redundancy and semantic dilution (degrading target representation quality). To tackle these issues, we propose DCCS-Det (Directional Context and Cross-Scale Aware Detector for Infrared Small Target), a novel detector that incorporates a Dual-stream Saliency Enhancement (DSE) block and a Latent-aware Semantic Extraction and Aggregation (LaSEA) module. The DSE block integrates localized perception with direction-aware context aggregation to help capture long-range spatial dependencies and local details. On this basis, the LaSEA module mitigates feature degradation via cross-scale feature extraction and random pooling sampling strategies, enhancing discriminative features and suppressing noise. Extensive experiments show that DCCS-Det achieves state-of-the-art detection accuracy with competitive efficiency across multiple datasets. Ablation studies further validate the contributions of DSE and LaSEA in improving target perception and feature representation under complex scenarios. \href{this https URL}{DCCS-Det Official Code is Available Here!}
Existing face-swapping methods often deliver competitive results in constrained settings but exhibit substantial quality degradation when handling extreme facial poses. To improve facial pose robustness, explicit geometric features are applied, but this approach remains problematic since it introduces additional dependencies and increases computational cost. Diffusion-based methods have achieved remarkable results; however, they are impractical for real-time processing. We introduce AlphaFace, which leverages an open-source vision-language model and CLIP image and text embeddings to apply novel visual and textual semantic contrastive losses. AlphaFace enables stronger identity representation and more precise attribute preservation, all while maintaining real-time performance. Comprehensive experiments across FF++, MPIE, and LPFF demonstrate that AlphaFace surpasses state-of-the-art methods in pose-challenging cases. The project is publicly available on `this https URL.
Structured Query Language (SQL) has remained the standard query language for databases. SQL is highly optimized for processing structured data laid out in relations. Meanwhile, in the present application development landscape, it is highly desirable to utilize the power of learned models to perform complex tasks. Large language models (LLMs) have been shown to understand and extract information from unstructured textual data. However, SQL as a query language and accompanying relational database systems are either incompatible or inefficient for workloads that require leveraging learned models. This results in complex engineering and multiple data migration operations that move data between the data sources and the model inference platform. In this paper, we present iPDB, a relational system that supports in-database machine learning (ML) and large language model (LLM) inferencing using extended SQL syntax. In iPDB, LLMs and ML calls can function as semantic projects, as predicates to perform semantic selects and semantic joins, or for semantic grouping in group-by clauses. iPDB has a novel relational predict operator and semantic query optimizations that enable users to write and efficiently execute semantic SQL queries, outperforming the state-of-the-art.
Infrared small target detection (IRSTD) plays a crucial role in numerous military and civilian applications. However, existing methods often face the gradual degradation of target edge pixels as the number of network layers increases, and traditional convolution struggles to differentiate between frequency components during feature extraction, leading to low-frequency backgrounds interfering with high-frequency targets and high-frequency noise triggering false detections. To address these limitations, we propose MDAFNet (Multi-scale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection), which integrates the Multi-Scale Differential Edge (MSDE) module and Dual-Domain Adaptive Feature Enhancement (DAFE) module. The MSDE module, through a multi-scale edge extraction and enhancement mechanism, effectively compensates for the cumulative loss of target edge information during downsampling. The DAFE module combines frequency domain processing mechanisms with simulated frequency decomposition and fusion mechanisms in the spatial domain to effectively improve the network's capability to adaptively enhance high-frequency targets and selectively suppress high-frequency noise. Experimental results on multiple datasets demonstrate the superior detection performance of MDAFNet.
Twisted generalized Reed-Solomon (TGRS) codes, as a flexible extension of classical generalized Reed-Solomon (GRS) codes, have attracted significant attention in recent years. In this paper, we construct two classes of LCD codes from the $(\mathcal{L},\mathcal{P})$-TGRS code $\mathcal{C}_h$ of length $n$ and dimension $k$, where $\mathcal{L}=\{0,1,\ldots,l\}$ for $l\leq n-k-1$ and $\mathcal{P}=\{h\}$ for $1\leq h\leq k-1$. First, we derive the parity check matrix of $\mathcal{C}_h$ and provide a necessary and sufficient condition for $\mathcal{C}_h$ to be an AMDS code. Then, we construct two classes of LCD codes from $\mathcal{C}_h$ by suitably choosing the evaluation points together with certain restrictions on the coefficient of $x^{h-1}$ in the polynomial associated with the twisting term. From the constructed LCD codes we further obtain two classes of LCD MDS codes. Finally, several examples are presented.
Erratum to the paper (Zhang et al., 2025): corrections to Table IV and the data in Page 3, Section A. In the post-pandemic era, a high proportion of civil aviation passengers wear masks during security checks, posing significant challenges to traditional face recognition models. The backbone network serves as the core component of face recognition models. In standard tests, r100 series models excelled (98%+ accuracy at 0.01% FAR in face comparison, high top1/top5 in search). r50 ranked second, r34_mask_v1 lagged. In masked tests, r100_mask_v2 led (90.07% accuracy), r50_mask_v3 performed best among r50 but trailed r100. Vit-Small/Tiny showed strong masked performance with gains in effectiveness. Through extensive comparative experiments, this paper conducts a comprehensive evaluation of several core backbone networks, aiming to reveal the impacts of different models on face recognition with and without masks, and provide specific deployment recommendations.
Environments are the bottleneck for self-improving agents. Current terminal benchmarks were built for evaluation, not training; reinforcement learning requires a scalable pipeline, not just a dataset. We introduce Endless Terminals, a fully autonomous pipeline that procedurally generates terminal-use tasks without human annotation. The pipeline has four stages: generating diverse task descriptions, building and validating containerized environments, producing completion tests, and filtering for solvability. From this pipeline we obtain 3255 tasks spanning file operations, log management, data processing, scripting, and database operations. We train agents using vanilla PPO with binary episode level rewards and a minimal interaction loop: no retrieval, multi-agent coordination, or specialized tools. Despite this simplicity, models trained on Endless Terminals show substantial gains: on our held-out dev set, Llama-3.2-3B improves from 4.0% to 18.2%, Qwen2.5-7B from 10.7% to 53.3%, and Qwen3-8B-openthinker-sft from 42.6% to 59.0%. These improvements transfer to human-curated benchmarks: models trained on Endless Terminals show substantial gains on held out human curated benchmarks: on TerminalBench 2.0, Llama-3.2-3B improves from 0.0% to 2.2%, Qwen2.5-7B from 2.2% to 3.4%, and Qwen3-8B-openthinker-sft from 1.1% to 6.7%, in each case outperforming alternative approaches including models with more complex agentic scaffolds. These results demonstrate that simple RL succeeds when environments scale.
``LLM-as-a-judge,'' which utilizes large language models (LLMs) as evaluators, has proven effective in many evaluation tasks. However, evaluator LLMs exhibit numerical bias, a phenomenon where certain evaluation scores are generated disproportionately often, leading reduced evaluation performance. This study investigates the cause of this bias. Given that most evaluator LLMs are aligned through instruction tuning and preference tuning, and that prior research suggests alignment reduces output diversity, we hypothesize that numerical bias arises from alignment. To test this, we compare outputs from pre- and post-alignment LLMs, and observe that alignment indeed increases numerical bias. We also explore mitigation strategies for post-alignment LLMs, including temperature scaling, distribution calibration, and score range adjustment. Among these, score range adjustment is most effective in reducing bias and improving performance, though still heuristic. Our findings highlight the need for further work on optimal score range selection and more robust mitigation strategies.
Deep learning models are effective for sequential data modeling, yet commonly used activation functions such as ReLU, LeakyReLU, and PReLU often exhibit gradient instability when applied to noisy, non-stationary financial time series. This study introduces BrownianReLU, a stochastic activation function induced by Brownian motion that enhances gradient propagation and learning stability in Long Short-Term Memory (LSTM) networks. Using Monte Carlo simulation, BrownianReLU provides a smooth, adaptive response for negative inputs, mitigating the dying ReLU problem. The proposed activation is evaluated on financial time series from Apple, GCB, and the S&P 500, as well as LendingClub loan data for classification. Results show consistently lower Mean Squared Error and higher $R^2$ values, indicating improved predictive accuracy and generalization. Although ROC-AUC metric is limited in classification tasks, activation choice significantly affects the trade-off between accuracy and sensitivity, with Brownian ReLU and the selected activation functions yielding practically meaningful performance.
Large language models (LLMs) have demonstrated exceptional performance in reasoning tasks such as mathematics and coding, matching or surpassing human capabilities. However, these impressive reasoning abilities face significant challenges in specialized domains. Taking Go as an example, although AlphaGo has established the high performance ceiling of AI systems in Go, mainstream LLMs still struggle to reach even beginner-level proficiency, let alone perform natural language reasoning. This performance gap between general-purpose LLMs and domain experts is significantly limiting the application of LLMs on a wider range of domain-specific tasks. In this work, we aim to bridge the divide between LLMs' general reasoning capabilities and expert knowledge in domain-specific tasks. We perform mixed fine-tuning with structured Go expertise and general long Chain-of-Thought (CoT) reasoning data as a cold start, followed by reinforcement learning to integrate expert knowledge in Go with general reasoning capabilities. Through this methodology, we present \textbf{LoGos}, a powerful LLM that not only maintains outstanding general reasoning abilities, but also conducts Go gameplay in natural language, demonstrating effective strategic reasoning and accurate next-move prediction. LoGos achieves performance comparable to human professional players, substantially surpassing all existing LLMs. Through this work, we aim to contribute insights on applying general LLM reasoning capabilities to specialized domains. We will release the first large-scale Go dataset for LLM training, the first LLM Go evaluation benchmark, and the first general LLM that reaches human professional-level performance in Go at: this https URL.
Many safety-critical systems require timely processing of sensor inputs to avoid potential safety hazards. Additionally, to support useful application features, such systems increasingly have a large rich operating system (OS) at the cost of potential security bugs. Thus, if a malicious party gains supervisor privileges, they could cause real-world damage by denying service to time-sensitive programs. Many past approaches to this problem completely isolate time-sensitive programs with a hypervisor; however, this prevents the programs from accessing useful OS services We introduce Ringmaster, a novel framework that enables enclaves or TEEs (Trusted Execution Environments) to asynchronously access rich, but potentially untrusted, OS services via Linux's io_uring. When service is denied by the untrusted OS, enclaves continue to operate on Ringmaster's minimal ARM TrustZone kernel with access to small, critical device drivers. This approach balances the need for secure, time-sensitive processing with the convenience of rich OS services. Additionally, Ringmaster supports large unmodified programs as enclaves, offering lower overhead compared to existing systems. We demonstrate how Ringmaster helps us build a working highly-secure system with minimal engineering. In our experiments with an unmanned aerial vehicle, Ringmaster achieved nearly 1GiB/sec of data into enclave on a Raspberry Pi4b, 0-3% throughput overhead compared to non-enclave tasks.
Understanding human emotions from multimodal signals poses a significant challenge in affective computing and human-robot interaction. While multimodal large language models (MLLMs) have excelled in general vision-language tasks, their capabilities in emotional reasoning remain limited. The field currently suffers from a scarcity of large-scale datasets with high-quality, descriptive emotion annotations and lacks standardized benchmarks for evaluation. Our preliminary framework, Emotion-LLaMA, pioneered instruction-tuned multimodal learning for emotion reasoning but was restricted by explicit face detectors, implicit fusion strategies, and low-quality training data with limited scale. To address these limitations, we present Emotion-LLaMAv2 and the MMEVerse benchmark, establishing an end-to-end pipeline together with a standardized evaluation setting for emotion recognition and reasoning. Emotion-LLaMAv2 introduces three key advances. First, an end-to-end multiview encoder eliminates external face detection and captures nuanced emotional cues via richer spatial and temporal multiview tokens. Second, a Conv Attention pre-fusion module is designed to enable simultaneous local and global multimodal feature interactions external to the LLM backbone. Third, a perception-to-cognition curriculum instruction tuning scheme within the LLaMA2 backbone unifies emotion recognition and free-form emotion reasoning. To support large-scale training and reproducible evaluation, MMEVerse aggregates twelve publicly available emotion datasets, including IEMOCAP, MELD, DFEW, and MAFW, into a unified multimodal instruction format. The data are re-annotated via a multi-agent pipeline involving Qwen2 Audio, Qwen2.5 VL, and GPT 4o, producing 130k training clips and 36k testing clips across 18 evaluation benchmarks.
The study on the expressive power of transformers shows that transformers are permutation equivariant, and they can approximate all permutation-equivariant continuous functions on a compact domain. However, these results are derived under real parameters and exact operations, while real implementations on computers can only use a finite set of numbers and inexact machine operations with round-off errors. In this work, we investigate the representability of floating-point transformers that use floating-point parameters and floating-point operations. Unlike existing results under exact operations, we first show that floating-point transformers can represent a class of non-permutation-equivariant functions even without positional encoding. Furthermore, we prove that floating-point transformers can represent all permutation-equivariant functions when the sequence length is bounded, but they cannot when the sequence length is large. We also found the minimal equivariance structure in floating-point transformers, and show that all non-trivial additive positional encoding can harm the representability of floating-point transformers.
Accurate semantic segmentation for histopathology image is crucial for quantitative tissue analysis and downstream clinical modeling. Recent segmentation foundation models have improved generalization through large-scale pretraining, yet remain poorly aligned with pathology because they treat segmentation as a static visual prediction task. Here we present VISTA-PATH, an interactive, class-aware pathology segmentation foundation model designed to resolve heterogeneous structures, incorporate expert feedback, and produce pixel-level segmentation that are directly meaningful for clinical interpretation. VISTA-PATH jointly conditions segmentation on visual context, semantic tissue descriptions, and optional expert-provided spatial prompts, enabling precise multi-class segmentation across heterogeneous pathology images. To support this paradigm, we curate VISTA-PATH Data, a large-scale pathology segmentation corpus comprising over 1.6 million image-mask-text triplets spanning 9 organs and 93 tissue classes. Across extensive held-out and external benchmarks, VISTA-PATH consistently outperforms existing segmentation foundation models. Importantly, VISTA-PATH supports dynamic human-in-the-loop refinement by propagating sparse, patch-level bounding-box annotation feedback into whole-slide segmentation. Finally, we show that the high-fidelity, class-aware segmentation produced by VISTA-PATH is a preferred model for computational pathology. It improve tissue microenvironment analysis through proposed Tumor Interaction Score (TIS), which exhibits strong and significant associations with patient survival. Together, these results establish VISTA-PATH as a foundation model that elevates pathology image segmentation from a static prediction to an interactive and clinically grounded representation for digital pathology. Source code and demo can be found at this https URL.
Integrated sensing and communication (ISAC) have been widely recognized as a key enabler for future wireless networks, where the Cramér-Rao bound (CRB) plays a central role in quantifying sensing this http URL this paper, we present the first study on CRB minimization in flexible intelligent metasurface (FIM)-enabled ISAC this http URL, we first derive an average CRB expression that explicitly depends on FIM surface shape and demonstrate that array reconfigurability can substantially reduce the CRB, thereby significantly enhancing sensing this http URL, to tackle the challenging CRB minimization problem, we adopt average Fisher information maximization as a surrogate objective and use the Gauss-Hermite quadrature method to obtain an explicit approximation of the objective this http URL resulting problem is then decoupled into three subproblem, i.e., beamforming optimization and transmit/receive FIM surface shape this http URL beamforming optimization, we employ the Schur complement and penalty-based semi-definite relaxation (SDR) technique to solve this http URL, we propose a fixed-point equation method and a projected gradient algorithm to optimize the surface shapes of the receive and transmit FIMs, this http URL results demonstrate that, compared to rigid arrays, surface shaping of both transmit and receive FIMs can significantly reduce the average sensing CRB while maintaining communication quality, and remains effective even in multi-target scenarios.
Programmers are turning to AI coding assistants to answer questions about their code. Benchmarks are needed to soundly evaluate these systems and understand their performance. To enable such a study, we curate a benchmark of real-world contextualized questions derived from Github pull request comments. Out of this work, we present RubberDuckBench: a multilingual benchmark of questions about code, along with detailed rubrics for evaluating answers. We evaluate a diverse set of 20 LLMs (proprietary & open-source) on answering these questions. We find that even state of the art models fail to give consistent, correct responses across the benchmark. Grok 4 (69.29%), Claude Opus 4 (68.5%), and GPT-5 (67.8%) perform best overall, but do not exhibit pairwise significant superiority over the next 9 best performing models. Most models obtain points through partial credit, with the best performing models only answering at most 2 questions completely correctly across all trials. Furthermore, models often hallucinate with lies in 58.3\% of responses on average. Cost analysis reveals no correlation between expense (API pricing or parameter count) and performance. We intend this benchmark to be a target for future research in trustworthy and correct AI coding assistants.
Social media platforms facilitate echo chambers through feedback loops between user preferences and recommendation algorithms. While algorithmic homogeneity is well-documented, the distinct evolutionary pathways driven by content-based versus link-based recommendations remain unclear. Using an extended dynamic Bounded Confidence Model (BCM), we show that content-based algorithms--unlike their link-based counterparts--steer social networks toward a segregation-before-polarization (SbP) pathway. Along this trajectory, structural segregation precedes opinion divergence, accelerating individual isolation while delaying but ultimately intensifying collective polarization. Furthermore, we reveal a paradox in information sharing: Reposting increases the number of connections in the network, yet it simultaneously reinforces echo chambers because it amplifies small, latent opinion differences that would otherwise remain inconsequential. These findings suggest that mitigating polarization requires stage-dependent algorithmic interventions, shifting from content-centric to structure-centric strategies as networks evolve.
Open-source ecosystems such as NPM and PyPI are increasingly targeted by supply chain attacks, yet existing detection methods either depend on fragile handcrafted rules or data-driven features that fail to capture evolving attack semantics. We present IntelGuard, a retrieval-augmented generation (RAG) based framework that integrates expert analytical reasoning into automated malicious package detection. IntelGuard constructs a structured knowledge base from over 8,000 threat intelligence reports, linking malicious code snippets with behavioral descriptions and expert reasoning. When analyzing new packages, it retrieves semantically similar malicious examples and applies LLM-guided reasoning to assess whether code behaviors align with intended functionality. Experiments on 4,027 real-world packages show that IntelGuard achieves 99% accuracy and a 0.50% false positive rate, while maintaining 96.5% accuracy on obfuscated code. Deployed on this http URL, it discovered 54 previously unreported malicious packages, demonstrating interpretable and robust detection guided by expert knowledge.
We demonstrate sufficiency of events-based synchronisation for solving deterministic fault-tolerant consensus in asynchrony. Main result is an algorithm that terminates with valid vector agreement, hence operates with safety, liveness, and tolerance to one crash. Reconciling with the FLP impossibility result, we identified: i) existence of two types of agreements: data-independent and data-dependent; and ii) dependence of FLP theorem correctness on three implicit assumptions. Consensus impossibility with data-dependent agreement is contingent on two of them. The theorem-stated impossibility with every agreement type hinges entirely on the third. We provide experimental results showing that the third assumption has no evidence in support.
We study lossy source coding under a distortion measure defined by the negative log-likelihood induced by a prescribed conditional distribution $P_{X|U}$. This \emph{log-likelihood distortion} models compression settings in which the reconstruction is a semantic representation from which the source can be probabilistically generated, rather than a pointwise approximation. We formulate the corresponding rate-distortion problem and characterize fundamental properties of the resulting rate-distortion function, including its connections to lossy compression under log-loss, classical rate-distortion problems with arbitrary distortion measures, and rate-distortion with perfect perception.
Retrieval-Augmented Generation (RAG) has emerged as a dominant paradigm for mitigating hallucinations in Large Language Models (LLMs) by incorporating external knowledge. Nevertheless, effectively integrating and interpreting key evidence scattered across noisy documents remains a critical challenge for existing RAG systems. In this paper, we propose GraphAnchor, a novel Graph-Anchored Knowledge Indexing approach that reconceptualizes graph structures from static knowledge representations into active, evolving knowledge indices. GraphAnchor incrementally updates a graph during iterative retrieval to anchor salient entities and relations, yielding a structured index that guides the LLM in evaluating knowledge sufficiency and formulating subsequent subqueries. The final answer is generated by jointly leveraging all retrieved documents and the final evolved graph. Experiments on four multi-hop question answering benchmarks demonstrate the effectiveness of GraphAnchor, and reveal that GraphAnchor modulates the LLM's attention to more effectively associate key information distributed in retrieved documents. All code and data are available at this https URL.
The Python Package Index (PyPI) has become a target for malicious actors, yet existing detection tools generate false positive rates of 15-30%, incorrectly flagging one-third of legitimate packages as malicious. This problem arises because current tools rely on simple syntactic rules rather than semantic understanding, failing to distinguish between identical API calls serving legitimate versus malicious purposes. To address this challenge, we propose PyGuard, a knowledge-driven framework that converts detection failures into useful behavioral knowledge by extracting patterns from existing tools' false positives and negatives. Our method utilizes hierarchical pattern mining to identify behavioral sequences that distinguish malicious from benign code, employs Large Language Models to create semantic abstractions beyond syntactic variations, and combines this knowledge into a detection system that integrates exact pattern matching with contextual reasoning. PyGuard achieves 99.50% accuracy with only 2 false positives versus 1,927-2,117 in existing tools, maintains 98.28% accuracy on obfuscated code, and identified 219 previously unknown malicious packages in real-world deployment. The behavioral patterns show cross-ecosystem applicability with 98.07% accuracy on NPM packages, demonstrating that semantic understanding enables knowledge transfer across programming languages.
Adversarial robustness refers to a model's ability to resist perturbation of inputs, while distribution robustness evaluates the performance of the model under data shifts. Although both aim to ensure reliable performance, prior work has revealed a tradeoff in distribution and adversarial robustness. Specifically, adversarial training might increase reliance on spurious features, which can harm distribution robustness, especially the performance on some underrepresented subgroups. We present a theoretical analysis of adversarial and distribution robustness that provides a tractable surrogate for per-step adversarial training by studying models trained on perturbed data. In addition to the tradeoff, our work further identified a nuanced phenomenon that $\ell_\infty$ perturbations on data with moderate bias can yield an increase in distribution robustness. Moreover, the gain in distribution robustness remains on highly skewed data when simplicity bias induces reliance on the core feature, characterized as greater feature separability. Our theoretical analysis extends the understanding of the tradeoff by highlighting the interplay of the tradeoff and the feature separability. Despite the tradeoff that persists in many cases, overlooking the role of feature separability may lead to misleading conclusions about robustness.
Large Language Models (LLMs) are increasingly deployed in domains such as education, mental health and customer support, where stable and consistent personas are critical for reliability. Yet, existing studies focus on narrative or role-playing tasks and overlook how adversarial conversational history alone can reshape induced personas. Black-box persona manipulation remains unexplored, raising concerns for robustness in realistic interactions. In response, we introduce the task of persona editing, which adversarially steers LLM traits through user-side inputs under a black-box, inference-only setting. To this end, we propose PHISH (Persona Hijacking via Implicit Steering in History), the first framework to expose a new vulnerability in LLM safety that embeds semantically loaded cues into user queries to gradually induce reverse personas. We also define a metric to quantify attack success. Across 3 benchmarks and 8 LLMs, PHISH predictably shifts personas, triggers collateral changes in correlated traits, and exhibits stronger effects in multi-turn settings. In high-risk domains mental health, tutoring, and customer support, PHISH reliably manipulates personas, validated by both human and LLM-as-Judge evaluations. Importantly, PHISH causes only a small reduction in reasoning benchmark performance, leaving overall utility largely intact while still enabling significant persona manipulation. While current guardrails offer partial protection, they remain brittle under sustained attack. Our findings expose new vulnerabilities in personas and highlight the need for context-resilient persona in LLMs. Our codebase and dataset is available at: this https URL
Discovery of sensitive and biologically grounded biomarkers is essential for early detection and monitoring of Alzheimer's disease (AD). Structural MRI is widely available but typically relies on hand-crafted features such as cortical thickness or volume. We ask whether self-supervised learning (SSL) can uncover more powerful biomarkers from the same data. Existing SSL methods underperform FreeSurfer-derived features in disease classification, conversion prediction, and amyloid status prediction. We introduce Residual Noise Contrastive Estimation (R-NCE), a new SSL framework that integrates auxiliary FreeSurfer features while maximizing additional augmentation-invariant information. R-NCE outperforms traditional features and existing SSL methods across multiple benchmarks, including AD conversion prediction. To assess biological relevance, we derive Brain Age Gap (BAG) measures and perform genome-wide association studies. R-NCE-BAG shows high heritability and associations with MAPT and IRAG1, with enrichment in astrocytes and oligodendrocytes, indicating sensitivity to neurodegenerative and cerebrovascular processes.
Cauchy's surface area formula expresses the surface area of a convex body as the average area of its orthogonal projections over all directions. While this tool is fundamental in Euclidean geometry, with applications ranging from geometric tomography to approximation theory, extensions to non-Euclidean settings remain less explored. In this paper, we establish an analog of Cauchy's formula for the Funk geometry induced by a convex body $K$ in $\mathbb{R}^d$, under the Holmes-Thompson measure. Our formula is simple and is based on central projections to points on the boundary of $K$. We show that when $K$ is a convex polytope, the formula reduces to a weighted sum involving central projections at the vertices of $K$. Finally, as a consequence of our analysis, we derive a generalization of Crofton's formula for surface areas in the Funk geometry. By viewing Euclidean, Minkowski, Hilbert, and hyperbolic geometries as limiting or special cases of the Funk setting, our results provide a single framework that unifies these classical surface area formulas.
Understanding the physical world, including object dynamics, material properties, and causal interactions, remains a core challenge in artificial intelligence. Although recent multi-modal large language models (MLLMs) have demonstrated impressive general reasoning capabilities, they still fall short of achieving human-level understanding of physical principles. Existing datasets for physical reasoning either rely on real-world videos, which incur high annotation costs, or on synthetic simulations, which suffer from limited realism and diversity. In this paper, we propose a novel paradigm that leverages glitches in gameplay videos, referring to visual anomalies that violate predefined physical laws, as a rich and scalable supervision source for physical world understanding. We introduce PhysGame, an meta information guided instruction-tuning dataset containing 140,057 glitch-centric question-answer pairs across five physical domains and sixteen fine-grained categories. To ensure data accuracy, we design a prompting strategy that utilizes gameplay metadata such as titles and descriptions to guide high-quality QA generation. Complementing PhysGame, we construct GameBench, an expert-annotated benchmark with 880 glitch-identified gameplay videos designed to evaluate physical reasoning capabilities. Extensive experiments show that PhysGame significantly enhances both Game2Real transferability, improving the real world physical reasoning performance of Qwen2.5VL by 2.5% on PhysBench, and Game2General transferability, yielding a 1.9% gain on the MVBench benchmark. Moreover, PhysGame-tuned models achieve a 3.7% absolute improvement on GameBench, demonstrating enhanced robustness in detecting physical implausibilities. These results indicate that learning from gameplay anomalies offers a scalable and effective pathway toward advancing physical world understanding in multimodal intelligence.
Semantic Communication (SemCom), leveraging its significant advantages in transmission efficiency and reliability, has emerged as a core technology for constructing future intellicise (intelligent and concise) wireless networks. However, intelligent attacks represented by semantic eavesdropping pose severe challenges to the security of SemCom. To address this challenge, Semantic Steganographic Communication (SemSteCom) achieves ``invisible'' encryption by implicitly embedding private semantic information into cover modality carriers. The state-of-the-art study has further introduced generative diffusion models to directly generate stega images without relying on original cover images, effectively enhancing steganographic capacity. Nevertheless, the recovery process of private images is highly dependent on the guidance of private semantic keys, which may be inferred by intelligent eavesdroppers, thereby introducing new security threats. To address this issue, we propose an Agentic AI-driven SemSteCom (AgentSemSteCom) scheme, which includes semantic extraction, digital token controlled reference image generation, coverless steganography, semantic codec, and optional task-oriented enhancement modules. The proposed AgentSemSteCom scheme obviates the need for both cover images and private semantic keys, thereby boosting steganographic capacity while reinforcing transmission security. The simulation results on open-source datasets verify that, AgentSemSteCom achieves better transmission quality and higher security levels than the baseline scheme.
The rapid proliferation of realistic deepfakes has raised urgent concerns over their misuse, motivating the use of defensive watermarks in synthetic images for reliable detection and provenance tracking. However, this defense paradigm assumes such watermarks are inherently resistant to removal. We challenge this assumption with DeMark, a query-free black-box attack framework that targets defensive image watermarking schemes for deepfakes. DeMark exploits latent-space vulnerabilities in encoder-decoder watermarking models through a compressive sensing based sparsification process, suppressing watermark signals while preserving perceptual and structural realism appropriate for deepfakes. Across eight state-of-the-art watermarking schemes, DeMark reduces watermark detection accuracy from 100% to 32.9% on average while maintaining natural visual quality, outperforming existing attacks. We further evaluate three defense strategies, including image super resolution, sparse watermarking, and adversarial training, and find them largely ineffective. These results demonstrate that current encoder decoder watermarking schemes remain vulnerable to latent-space manipulations, underscoring the need for more robust watermarking methods to safeguard against deepfakes.
With the rapid growth of scientific literature, scientific question answering (SciQA) has become increasingly critical for exploring and utilizing scientific knowledge. Retrieval-Augmented Generation (RAG) enhances LLMs by incorporating knowledge from external sources, thereby providing credible evidence for scientific question answering. But existing retrieval and reranking methods remain vulnerable to passages that are semantically similar but logically irrelevant, often reducing factual reliability and amplifying this http URL address this challenge, we propose a Deep Evidence Reranking Agent (DeepEra) that integrates step-by-step reasoning, enabling more precise evaluation of candidate passages beyond surface-level semantics. To support systematic evaluation, we construct SciRAG-SSLI (Scientific RAG - Semantically Similar but Logically Irrelevant), a large-scale dataset comprising about 300K SciQA instances across 10 subjects, constructed from 10M scientific corpus. The dataset combines naturally retrieved contexts with systematically generated distractors to test logical robustness and factual grounding. Comprehensive evaluations confirm that our approach achieves superior retrieval performance compared to leading rerankers. To our knowledge, this work is the first to comprehensively study and empirically validate innegligible SSLI issues in two-stage RAG frameworks.
While Large Language Models (LLMs) demonstrate remarkable proficiency in semantic understanding, they often struggle to ensure structural consistency and reasoning reliability in complex decision-making tasks that demand rigorous logic. Although classical decision theories, such as the Analytic Hierarchy Process (AHP), offer systematic rational frameworks, their construction relies heavily on labor-intensive domain expertise, creating an "expert bottleneck" that hinders scalability in general scenarios. To bridge the gap between the generalization capabilities of LLMs and the rigor of decision theory, we propose Doc2AHP, a novel structured inference framework guided by AHP principles. Eliminating the need for extensive annotated data or manual intervention, our approach leverages the structural principles of AHP as constraints to direct the LLM in a constrained search within the unstructured document space, thereby enforcing the logical entailment between parent and child nodes. Furthermore, we introduce a multi-agent weighting mechanism coupled with an adaptive consistency optimization strategy to ensure the numerical consistency of weight allocation. Empirical results demonstrate that Doc2AHP not only empowers non-expert users to construct high-quality decision models from scratch but also significantly outperforms direct generative baselines in both logical completeness and downstream task accuracy.
Large language models have demonstrated strong reasoning capabilities in complex tasks through tool integration, which is typically framed as a Markov Decision Process and optimized with trajectory-level RL algorithms such as GRPO. However, a common class of reasoning tasks, iterative optimization, presents distinct challenges: the agent interacts with the same underlying environment state across turns, and the value of a trajectory is determined by the best turn-level reward rather than cumulative returns. Existing GRPO-based methods cannot perform fine-grained, turn-level optimization in such settings, while black-box optimization methods discard prior knowledge and reasoning capabilities. To address this gap, we propose Turn-Level GRPO (TL-GRPO), a lightweight RL algorithm that performs turn-level group sampling for fine-grained optimization. We evaluate TL-GRPO on analog circuit sizing (ACS), a challenging scientific optimization task requiring multiple simulations and domain expertise. Results show that TL-GRPO outperforms standard GRPO and Bayesian optimization methods across various specifications. Furthermore, our 30B model trained with TL-GRPO achieves state-of-the-art performance on ACS tasks under same simulation budget, demonstrating both strong generalization and practical utility.
We consider the problems of computing maximal palindromes and distinct palindromes in a trie. A trie is a natural generalization of a string, which can be seen as a single-path tree. There is a linear-time offline algorithm to compute maximal palindromes and distinct palindromes in a given (static) trie whose edge-labels are drawn from a linearly-sortable alphabet [Mieno et al., ISAAC 2022]. In this paper, we tackle problems of palindrome enumeration on dynamic tries which support leaf additions and leaf deletions. We propose the first sub-quadratic algorithms to enumerate palindromes in a dynamic trie. For maximal palindromes, we propose an algorithm that runs in $O(N \min(\log h, \sigma))$ time and uses $O(N)$ space, where $N$ is the maximum number of edges in the trie, $\sigma$ is the size of the alphabet, and $h$ is the height of the trie. For distinct palindromes, we develop several online algorithms based on different algorithmic frameworks, including approaches using the EERTREE (a.k.a. palindromic tree) and the suffix tree of a trie. These algorithms support leaf insertions and deletions in the trie and achieve different time and space trade-offs. Furthermore, as a by-product, we present online algorithms to construct the suffix tree and the EERTREE of the input trie, which is of independent interest.
As large language models (LLMs) increasingly tackle complex reasoning tasks, test-time scaling has become critical for enhancing capabilities. However, in agentic scenarios with frequent tool calls, the traditional generation-length-based definition breaks down: tool latency decouples inference time from generation length. We propose Timely Machine, redefining test-time as wall-clock time, where models dynamically adjust strategies based on time budgets. We introduce Timely-Eval, a benchmark spanning high-frequency tool calls, low-frequency tool calls, and time-constrained reasoning. By varying tool latency, we find smaller models excel with fast feedback through more interactions, while larger models dominate high-latency settings via superior interaction quality. Moreover, existing models fail to adapt reasoning to time budgets. We propose Timely-RL to address this gap. After cold-start supervised fine-tuning, we use reinforcement learning to enhance temporal planning. Timely-RL improves time budget awareness and consistently boosts performance across Timely-Eval. We hope our work offers a new perspective on test-time scaling for the agentic era.
Wound care is often challenged by the economic and logistical burdens that consistently afflict patients and hospitals worldwide. In recent decades, healthcare professionals have sought support from computer vision and machine learning algorithms. In particular, wound segmentation has gained interest due to its ability to provide professionals with fast, automatic tissue assessment from standard RGB images. Some approaches have extended segmentation to 3D, enabling more complete and precise healing progress tracking. However, inferring multi-view consistent 3D structures from 2D images remains a challenge. In this paper, we evaluate WoundNeRF, a NeRF SDF-based method for estimating robust wound segmentations from automatically generated annotations. We demonstrate the potential of this paradigm in recovering accurate segmentations by comparing it against state-of-the-art Vision Transformer networks and conventional rasterisation-based algorithms. The code will be released to facilitate further development in this promising paradigm.
We study revenue maximization when a seller offers $k$ identical units to ex ante heterogeneous, unit-demand buyers. While anonymous pricing can be $\Theta(\log k)$ worse than optimal in general multi-unit environments, we show that this pessimism disappears in large markets, where no single buyer accounts for a non-negligible share of optimal revenue. Under (quasi-)regularity, anonymous pricing achieves a $2+O(1/\sqrt{k})$ approximation to the optimal mechanism; the worst-case ratio is maximized at about $2.47$ when $k=1$ and converges to $2$ as $k$ grows. This indicates that the gains from third-degree price discrimination are mild in large markets.
A reliable executable environment is the foundation for ensuring that large language models solve software engineering tasks. Due to the complex and tedious construction process, large-scale configuration is relatively inefficient. However, most methods always overlook fine-grained analysis of the actions performed by the agent, making it difficult to handle complex errors and resulting in configuration failures. To address this bottleneck, we propose EvoConfig, an efficient environment configuration framework that optimizes multi-agent collaboration to build correct runtime environments. EvoConfig features an expert diagnosis module for fine-grained post-execution analysis, and a self-evolving mechanism that lets expert agents self-feedback and dynamically adjust error-fixing priorities in real time. Empirically, EvoConfig matches the previous state-of-the-art Repo2Run on Repo2Run's 420 repositories, while delivering clear gains on harder cases: on the more challenging Envbench, EvoConfig achieves a 78.1% success rate, outperforming Repo2Run by 7.1%. Beyond end-to-end success, EvoConfig also demonstrates stronger debugging competence, achieving higher accuracy in error identification and producing more effective repair recommendations than existing methods.
NoSQL databases are widely used in modern applications due to their scalability and schema flexibility, yet they often rely on eventual consistency models that limit reliable transaction processing. This study proposes a four-stage transaction management framework for document-oriented NoSQL databases, with MongoDB as the reference platform. The framework combines transaction lifecycle management, operation classification, pre-execution conflict detection, and an adaptive locking strategy with timeout-based deadlock prevention. Formal correctness analysis shows that the proposed approach guarantees conflict serializability under defined conditions. An experimental evaluation using the Yahoo Cloud Serving Benchmark (YCSB) workloads A, B, and F, with concurrency levels ranging from 1 to 100 clients, demonstrates a reduction in transaction abort rates from 8.3% to 4.7%, the elimination of observed deadlocks, and a 34.2% decrease in latency variance. Throughput improvements ranging from 6.3% to 18.4% are observed under high concurrency, particularly for read-modify-write workloads. Distributed experiments on clusters of up to 9 nodes confirm scalability, achieving 15.2% higher throughput and 53% lower abort rates than baseline systems. Comparisons with MongoDB's native transactions, CockroachDB, and TiDB indicate that the proposed framework strikes a good balance between consistency guarantees and performance overhead. Sensitivity analysis identifies optimal parameter settings, including a lock timeout of 100 ms, an initial backoff of 10 ms, and a maximum backoff of 500 ms. These results show that carefully designed consistency mechanisms can significantly improve data integrity in NoSQL systems without undermining scalability.
Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of qualitative possible values, the nested granular cluster effect is prevalent in the implicit discrete distance space of categorical data. That is, data objects frequently overlap in space or subspace to form small compact clusters, and similar small clusters often form larger clusters. However, the distance space cannot be well-defined like the Euclidean distance due to the qualitative categorical data values, which brings great challenges to the cluster analysis of categorical data. In view of this, we design a Multi-Granular Competitive Penalization Learning (MGCPL) algorithm to allow potential clusters to interactively tune themselves and converge in stages with different numbers of naturally compact clusters. To leverage MGCPL, we also propose a Cluster Aggregation strategy based on MGCPL Encoding (CAME) to first encode the data objects according to the learned multi-granular distributions, and then perform final clustering on the embeddings. It turns out that the proposed MGCPL-guided Categorical Data Clustering (MCDC) approach is competent in automatically exploring the nested distribution of multi-granular clusters and highly robust to categorical data sets from various domains. Benefiting from its linear time complexity, MCDC is scalable to large-scale data sets and promising in pre-partitioning data sets or compute nodes for boosting distributed computing. Extensive experiments with statistical evidence demonstrate its superiority compared to state-of-the-art counterparts on various real public data sets.
Conversational user queries are increasingly challenging traditional e-commerce platforms, whose search systems are typically optimized for keyword-based queries. We present an LLM-based semantic search framework that effectively captures user intent from conversational queries by combining domain-specific embeddings with structured filters. To address the challenge of limited labeled data, we generate synthetic data using LLMs to guide the fine-tuning of two models: an embedding model that positions semantically similar products close together in the representation space, and a generative model for converting natural language queries into structured constraints. By combining similarity-based retrieval with constraint-based filtering, our framework achieves strong precision and recall across various settings compared to baseline approaches on a real-world dataset.
This paper presents an energy-efficient downlink cell-free massive multiple-input multiple-output (CF-mMIMO) integrated sensing and communication (ISAC) network that serves ultra-reliable low-latency communication (URLLC) users while simultaneously detecting a target. We propose a load-balancing algorithm that minimizes the total network power consumption; including transmit power, fixed static power, and traffic-dependent fronthaul power at the access points (APs) without degrading system performance. To this end, we formulate a mixed-integer non-convex optimization problem and introduce an iterative joint power allocation and AP load balancing (JPALB) algorithm. The algorithm aims to reduce total power usage while meeting both the communication quality-of-service (QoS) requirements of URLLC users and the sensing QoS needed for target detection. Proposed JPALB algorithm for ISAC systems was simulated with maximum-ratio transmission (MRT) and regularized zero-forcing (RZF) precoders. Simulation results show approximately 33% reduction in power consumption, using JPALB algorithm compared to a baseline with no load balancing, without compromising communication and sensing QoS requirements.
Federated graph learning (FGL) enables collaborative training of graph neural networks (GNNs) across decentralized subgraphs without exposing raw data. While existing FGL methods often achieve high overall accuracy, we show that this average performance can conceal severe degradation on disadvantaged node groups. From a fairness perspective, these disparities arise systematically from three coupled sources: label skew toward majority patterns, topology confounding in message propagation, and aggregation dilution of updates from hard clients. To address this, we propose \textbf{BoostFGL}, a boosting-style framework for fairness-aware FGL. BoostFGL introduces three coordinated mechanisms: \ding{182} \emph{Client-side node boosting}, which reshapes local training signals to emphasize systematically under-served nodes; \ding{183} \emph{Client-side topology boosting}, which reallocates propagation emphasis toward reliable yet underused structures and attenuates misleading neighborhoods; and \ding{184} \emph{Server-side model boosting}, which performs difficulty- and reliability-aware aggregation to preserve informative updates from hard clients while stabilizing the global model. Extensive experiments on 9 datasets show that BoostFGL delivers substantial fairness gains, improving Overall-F1 by 8.43\%, while preserving competitive overall performance against strong FGL baselines.
Accurate fine-grained tree species classification is critical for forest inventory and biodiversity monitoring. Existing methods predominantly focus on designing complex architectures to fit local data distributions. However, they often overlook the long-tailed distributions and high inter-class similarity inherent in limited data, thereby struggling to distinguish between few-shot or confusing categories. In the process of knowledge dissemination in the human world, individuals will actively seek expert assistance to transcend the limitations of local thinking. Inspired by this, we introduce an external "Domain Expert" and propose an Expert Knowledge-Guided Classification Decision Calibration Network (EKDC-Net) to overcome these challenges. Our framework addresses two core issues: expert knowledge extraction and utilization. Specifically, we first develop a Local Prior Guided Knowledge Extraction Module (LPKEM). By leveraging Class Activation Map (CAM) analysis, LPKEM guides the domain expert to focus exclusively on discriminative features essential for classification. Subsequently, to effectively integrate this knowledge, we design an Uncertainty-Guided Decision Calibration Module (UDCM). This module dynamically corrects the local model's decisions by considering both overall category uncertainty and instance-level prediction uncertainty. Furthermore, we present a large-scale classification dataset covering 102 tree species, named CU-Tree102 to address the issue of scarce diversity in current benchmarks. Experiments on three benchmark datasets demonstrate that our approach achieves state-of-the-art performance. Crucially, as a lightweight plug-and-play module, EKDC-Net improves backbone accuracy by 6.42% and precision by 11.46% using only 0.08M additional learnable parameters. The dataset, code, and pre-trained models are available at this https URL.
FrodoKEM is a lattice-based post-quantum key encapsulation mechanism (KEM). It has been considered for standardization by the International Organization for Standardization (ISO) due to its robust security profile. However, its hardware implementation exhibits a weakness of high latency and heavy resource burden, hindering its practical application. Moreover, diverse usage scenarios call for comprehensive functionality. To address these challenges, this paper presents a high-performance and efficient crypto-processor for FrodoKEM. A multiple-instruction overlapped execution scheme is introduced to enable efficient multi-module scheduling and minimize operational latency. Furthermore, a high-speed, reconfigurable parallel multiplier array is integrated to handle intensive matrix computations under diverse computation patterns, significantly enhancing hardware efficiency. In addition, a compact memory scheduling strategy shortens the lifespan of intermediate matrices, thereby reducing overall storage requirements. The proposed design provides full support for all FrodoKEM security levels and protocol phases. It consumes 13467 LUTs, 6042 FFs, and 14 BRAMs on an Artix-7 FPGA and achieves the fastest reported execution time. Compared with state-of-the-art hardware implementations, our design improves the area-time product (ATP) by 1.75-2.00 times.
Artificial-intelligence (AI) workloads are driving rapid growth in data-center electricity use and rack power density, increasing demand for power-delivery systems that are efficient and robust to fast load transients. Conventional uninterruptible power supply (UPS) based AC distribution chains involve multiple conversion stages and line-frequency transformers, which compound losses and are less compatible with dynamic AI power profiles. Although solid-state transformers (SSTs) and 800 VDC distribution architecture are widely discussed, implementable topology/control details, and long-horizon validation with realistic operating profiles remain limited. This paper develops an SST-driven 800 VDC architecture that converts 10 kV MVAC to an 800V LVDC bus using a three-phase H-bridge AC/DC stage cascaded with a dual-active-bridge (DAB) DC/DC stage. A coordinated closed-loop control scheme, combining rectifier voltage/current regulation and DAB phase-shift control, is designed to maintain DC-bus voltage stability. The proposed system is implemented on the real-time digital simulation (RTDS) platform and evaluated via sequential simulations using real-world day- and month-scale operating profiles of data centers, benchmarked against a UPS supply chain. Numerical studies demonstrate tight 800 VDC regulation, reduced input-side energy consumption compared with the UPS baseline, and satisfactory power-quality performance. A capacitance sensitivity test quantifies tradeoffs between DC-bus ripple and low-frequency input-power oscillations, yielding a practical capacitance range for design. Overall, the work provides a reproducible evaluation workflow and actionable guidance for next-generation AI data centers.
While Retrieval-Augmented Generation (RAG) has been swiftly adopted in scientific and clinical QA systems, a comprehensive evaluation benchmark in the medical domain is lacking. To address this gap, we introduce the Medical Retrieval-Augmented Generation (MRAG) benchmark, covering various tasks in English and Chinese languages, and building a corpus with Wikipedia and Pubmed. Additionally, we develop the MRAG-Toolkit, facilitating systematic exploration of different RAG components. Our experiments reveal that: (a) RAG enhances LLM reliability across MRAG tasks. (b) the performance of RAG systems is influenced by retrieval approaches, model sizes, and prompting strategies. (c) While RAG improves usefulness and reasoning quality, LLM responses may become slightly less readable for long-form questions. We will release the MRAG-Bench's dataset and toolkit with CCBY-4.0 license upon acceptance, to facilitate applications from both academia and industry.
Commonsense reasoning often involves evaluating multiple plausible interpretations rather than selecting a single atomic answer, yet most benchmarks rely on single-label evaluation, obscuring whether statements are jointly plausible, mutually exclusive, or jointly implausible. We introduce LOGICAL-COMMONSENSEQA, a benchmark that re-frames commonsense reasoning as logical composition over pairs of atomic statements using plausibility-level operators (AND, OR, NEITHER/NOR). Evaluating instruction-tuned, reasoning-specialized, and fine-tuned models under zero-shot, few-shot, and chain-of-thought prompting, we find that while models perform reasonably on conjunctive and moderately on disjunctive reasoning, performance degrades sharply on negation-based questions. LOGICAL-COMMONSENSEQA exposes fundamental reasoning limitations and provides a controlled framework for advancing compositional commonsense reasoning.
Despite the intrinsic risk-awareness of Large Language Models (LLMs), current defenses often result in shallow safety alignment, rendering models vulnerable to disguised attacks (e.g., prefilling) while degrading utility. To bridge this gap, we propose SafeThinker, an adaptive framework that dynamically allocates defensive resources via a lightweight gateway classifier. Based on the gateway's risk assessment, inputs are routed through three distinct mechanisms: (i) a Standardized Refusal Mechanism for explicit threats to maximize efficiency; (ii) a Safety-Aware Twin Expert (SATE) module to intercept deceptive attacks masquerading as benign queries; and (iii) a Distribution-Guided Think (DDGT) component that adaptively intervenes during uncertain generation. Experiments show that SafeThinker significantly lowers attack success rates across diverse jailbreak strategies without compromising utility, demonstrating that coordinating intrinsic judgment throughout the generation process effectively balances robustness and practicality.
The rapid development of large language models is transforming software development. Beyond serving as code auto-completion tools in integrated development environments, large language models increasingly function as foundation models within coding agents in vibe-coding scenarios. In such settings, prompts play a central role in agent-based intelligent software development, as they not only guide the behavior of large language models but also serve as carriers of user requirements. Under the dominant conversational paradigm, prompts are typically divided into system prompts and user prompts. System prompts provide high-level instructions to steer model behavior and establish conversational context, while user prompts represent inputs and requirements provided by human users. Despite their importance, designing effective prompts remains challenging, as it requires expertise in both prompt engineering and software engineering, particularly requirements engineering. To reduce the burden of manual prompt construction, numerous automated prompt engineering methods have been proposed. However, most existing approaches neglect the methodological principles of requirements engineering, limiting their ability to generate artifacts that conform to formal requirement specifications in realistic software development scenarios. To address this gap, we propose REprompt, a multi-agent prompt optimization framework guided by requirements engineering. Experiment results demonstrate that REprompt effectively optimizes both system and user prompts by grounding prompt generation in requirements engineering principles.
Single-prompt evaluations dominate current LLM benchmarking, yet they fail to capture the conversational dynamics where real-world harm occurs. In this study, we examined whether conversation length affects response veracity by evaluating LLM performance on the BoolQ dataset under varying length and scaffolding conditions. Our results across three distinct LLMs revealed model-specific vulnerabilities that are invisible under single-turn testing. The length-dependent and scaffold-specific effects we observed demonstrate a fundamental limitation of static evaluations, as deployment-relevant vulnerabilities could only be spotted in a multi-turn conversational setting.
The k-nearest neighbors (kNN) algorithm is a cornerstone of non-parametric classification in artificial intelligence, yet its deployment in large-scale applications is persistently constrained by the computational trade-off between inference speed and accuracy. Existing approximate nearest neighbor solutions accelerate retrieval but often degrade classification precision and lack adaptability in selecting the optimal neighborhood size (k). Here, we present an adaptive graph model that decouples inference latency from computational complexity. By integrating a Hierarchical Navigable Small World (HNSW) graph with a pre-computed voting mechanism, our framework completely transfers the computational burden of neighbor selection and weighting to the training phase. Within this topological structure, higher graph layers enable rapid navigation, while lower layers encode precise, node-specific decision boundaries with adaptive neighbor counts. Benchmarking against eight state-of-the-art baselines across six diverse datasets, we demonstrate that this architecture significantly accelerates inference speeds, achieving real-time performance, without compromising classification accuracy. These findings offer a scalable, robust solution to the long-standing inference bottleneck of kNN, establishing a new structural paradigm for graph-based nonparametric learning.
Solving massive-scale optimization problems requires scalable first-order methods with low per-iteration cost. This tutorial highlights a shift in optimization: using differentiable programming not only to execute algorithms but to learn how to design them. Modern frameworks such as PyTorch, TensorFlow, and JAX enable this paradigm through efficient automatic differentiation. Embedding first-order methods within these systems allows end-to-end training that improves convergence and solution quality. Guided by Fenchel-Rockafellar duality, the tutorial demonstrates how duality-informed iterative schemes such as ADMM and PDHG can be learned and adapted. Case studies across LP, OPF, Laplacian regularization, and neural network verification illustrate these gains.
We study the complexity of candidate control in participatory budgeting elections. The goal of constructive candidate control is to ensure that a given candidate wins by either adding or deleting candidates from the election (in the destructive setting, the goal is to prevent a given candidate from winning). We show that such control problems are NP-hard to solve for many participatory budgeting voting rules, including Phragmén and Method of Equal Shares, but there are natural cases with polynomial-time algorithms (e.g., for the GreedyAV rule and projects with costs encoded in unary). We also argue that control by deleting candidates is a useful tool for assessing the performance (or, strength) of initially losing projects, and we support this view with experiments.
With the advent of large language models (LLMs), it has become common practice for users to draft text and utilize LLMs to enhance its quality through paraphrasing. However, this process can sometimes result in the loss or distortion of the original intended meaning. Due to the human-like quality of LLM-generated text, traditional detection methods often fail, particularly when text is paraphrased to closely mimic original content. In response to these challenges, we propose a novel approach named SearchLLM, designed to identify LLM-paraphrased text by leveraging search engine capabilities to locate potential original text sources. By analyzing similarities between the input and regenerated versions of candidate sources, SearchLLM effectively distinguishes LLM-paraphrased content. SearchLLM is designed as a proxy layer, allowing seamless integration with existing detectors to enhance their performance. Experimental results across various LLMs demonstrate that SearchLLM consistently enhances the accuracy of recent detectors in detecting LLM-paraphrased text that closely mimics original content. Furthermore, SearchLLM also helps the detectors prevent paraphrasing attacks.
Introduction. AI Ethics is framed distinctly across actors and stakeholder groups. We report results from a case study of OpenAI analysing ethical AI discourse. Method. Research addressed: How has OpenAI's public discourse leveraged 'ethics', 'safety', 'alignment' and adjacent related concepts over time, and what does discourse signal about framing in practice? A structured corpus, differentiating between communication for a general audience and communication with an academic audience, was assembled from public documentation. Analysis. Qualitative content analysis of ethical themes combined inductively derived and deductively applied codes. Quantitative analysis leveraged computational content analysis methods via NLP to model topics and quantify changes in rhetoric over time. Visualizations report aggregate results. For reproducible results, we have released our code at this https URL. Results. Results indicate that safety and risk discourse dominate OpenAI's public communication and documentation, without applying academic and advocacy ethics frameworks or vocabularies. Conclusions. Implications for governance are presented, along with discussion of ethics-washing practices in industry.
Understanding why Transformers perform so well remains challenging due to their non-convex optimization landscape. In this work, we analyze a shallow Transformer with $m$ independent heads trained by projected gradient descent in the kernel regime. Our analysis reveals two main findings: (i) the width required for nonasymptotic guarantees scales only logarithmically with the sample size $n$, and (ii) the optimization error is independent of the sequence length $T$. This contrasts sharply with recurrent architectures, where the optimization error can grow exponentially with $T$. The trade-off is memory: to keep the full context, the Transformer's memory requirement grows with the sequence length. We validate our theoretical results numerically in a teacher-student setting and confirm the predicted scaling laws for Transformers.
Diffusion Transformers have recently demonstrated remarkable performance in video generation. However, the long input sequences result in high computational latency due to the quadratic complexity of full attention. Various sparse attention mechanisms have been proposed. Training-free sparse attention is constrained by limited sparsity and thus offers modest acceleration, whereas training-based methods can reach much higher sparsity but demand substantial data and computation for training. In this work, we propose SALAD, introducing a lightweight linear attention branch in parallel with the sparse attention. By incorporating an input-dependent gating mechanism to finely balance the two branches, our method attains 90% sparsity and 1.72x inference speedup, while maintaining generation quality comparable to the full attention baseline. Moreover, our finetuning process is highly efficient, requiring only 2,000 video samples and 1,600 training steps with a batch size of 8.
Time series data from the Intensive Care Unit (ICU) provides critical information for patient monitoring. While recent advancements in applying Large Language Models (LLMs) to time series modeling (TSM) have shown great promise, their effectiveness on the irregular ICU data, characterized by particularly high rates of missing values, remains largely unexplored. This work investigates two key components underlying the success of LLMs for TSM: the time series encoder and the multimodal alignment strategy. To this end, we establish a systematic testbed to evaluate their impact across various state-of-the-art LLM-based methods on benchmark ICU datasets against strong supervised and self-supervised baselines. Results reveal that the encoder design is more critical than the alignment strategy. Encoders that explicitly model irregularity achieve substantial performance gains, yielding an average AUPRC increase of $12.8\%$ over the vanilla Transformer. While less impactful, the alignment strategy is also noteworthy, with the best-performing semantically rich, fusion-based strategy achieving a modest $2.9\%$ improvement over cross-attention. However, LLM-based methods require at least 10$\times$ longer training than the best-performing irregular supervised models, while delivering only comparable performance. They also underperform in data-scarce few-shot learning settings. These findings highlight both the promise and current limitations of LLMs for irregular ICU time series. The code is available at this https URL.
Encoding digital information into DNA sequences offers an attractive potential solution for storing rapidly growing data under the information age and the rise of artificial intelligence. However, practical implementations of DNA storage are constrained by errors introduced during synthesis, preservation, and sequencing processes, and traditional error-correcting codes remain vulnerable to noise levels that exceed predefined thresholds. Here, we developed a Partitioning-mapping with Jump-rotating (PJ) encoding scheme, which exhibits exceptional noise resilience. PJ removes cross-strand information dependencies so that strand loss manifests as localized gaps rather than catastrophic file failure. It prioritizes file decodability under arbitrary noise conditions and leverages AI-based inference to enable controllable recovery of digital information. For the intra-strand encoding, we develop a jump-rotating strategy that relaxes sequence constraints relative to conventional rotating codes and provides tunable information density via an adjustable jump length. Based on this encoding architecture, the original file information can always be decoded and recovered under any strand loss ratio, with fidelity degrading smoothly as damage increases. We demonstrate that original files can be effectively recovered even with 10% strand loss, and machine learning datasets stored under these conditions retain their classification performance. Experiments further confirmed that PJ successfully decodes image files after extreme environmental disturbance using accelerated aging and high-intensity X-ray irradiation. By eliminating reliance on prior error probabilities, PJ establishes a general framework for robust, archival DNA storage capable of withstanding the rigorous conditions of real-world preservation.
Federated graph learning (FGL) enables collaborative training on graph data across multiple clients. With the rise of large language models (LLMs), textual attributes in FGL graphs are gaining attention. Text-attributed graph federated learning (TAG-FGL) improves FGL by explicitly leveraging LLMs to process and integrate these textual features. However, current TAG-FGL methods face three main challenges: \textbf{(1) Overhead.} LLMs for processing long texts incur high token and computation costs. To make TAG-FGL practical, we introduce graph condensation (GC) to reduce computation load, but this choice also brings new issues. \textbf{(2) Suboptimal.} To reduce LLM overhead, we introduce GC into TAG-FGL by compressing multi-hop texts/neighborhoods into a condensed core with fixed LLM surrogates. However, this one-shot condensation is often not client-adaptive, leading to suboptimal performance. \textbf{(3) Interpretability.} LLM-based condensation further introduces a black-box bottleneck: summaries lack faithful attribution and clear grounding to specific source spans, making local inspection and auditing difficult. To address the above issues, we propose \textbf{DANCE}, a new TAG-FGL paradigm with GC. To improve \textbf{suboptimal} performance, DANCE performs round-wise, model-in-the-loop condensation refresh using the latest global model. To enhance \textbf{interpretability}, DANCE preserves provenance by storing locally inspectable evidence packs that trace predictions to selected neighbors and source text spans. Across 8 TAG datasets, DANCE improves accuracy by \textbf{2.33\%} at an \textbf{8\%} condensation ratio, with \textbf{33.42\%} fewer tokens than baselines.
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in visual recognition and semantic understanding. Nevertheless, their ability to perform precise compositional spatial reasoning remains largely unexplored. Existing benchmarks often involve relatively simple tasks and rely on semantic approximations or coarse relative positioning, while their evaluation metrics are typically limited and lack rigorous mathematical formulations. To bridge this gap, we introduce TangramPuzzle, a geometry-grounded benchmark designed to evaluate compositional spatial reasoning through the lens of the classic Tangram game. We propose the Tangram Construction Expression (TCE), a symbolic geometric framework that grounds tangram assemblies in exact, machine-verifiable coordinate specifications, to mitigate the ambiguity of visual approximation. We design two complementary tasks: Outline Prediction, which demands inferring global shapes from local components, and End-to-End Code Generation, which requires solving inverse geometric assembly problems. We conduct extensive evaluation experiments on advanced open-source and proprietary models, revealing an interesting insight: MLLMs tend to prioritize matching the target silhouette while neglecting geometric constraints, leading to distortions or deformations of the pieces.
Phase-field simulations are a practical but also expensive tool to calculate microstructural evolution. This work aims to compare explicit time integrators for a broad class of phase-field models involving coupling between the phase-field and concentration. Particular integrators are adapted to constraints on the phase-field as well as storage scheme implications. Reproducible benchmarks are defined with a focus on having exact sharp interface solutions, allowing for identification of dominant error terms. Speedups of 4 to 114 over the classic forward Euler integrator are achievable while still using a fully explicit scheme without appreciable accuracy loss. Application examples include final stage sintering with pores slowing down grain growth as they move and merge over time.
Multimodal LLMs are powerful but prone to object hallucinations, which describe non-existent entities and harm reliability. While recent unlearning methods attempt to mitigate this, we identify a critical flaw: structural fragility. We empirically demonstrate that standard erasure achieves only superficial suppression, trapping the model in sharp minima where hallucinations catastrophically resurge after lightweight relearning. To ensure geometric stability, we propose SARE, which casts unlearning as a targeted min-max optimization problem and uses a Targeted-SAM mechanism to explicitly flatten the loss landscape around hallucinated concepts. By suppressing hallucinations under simulated worst-case parameter perturbations, our framework ensures robust removal stable against weight shifts. Extensive experiments demonstrate that SARE significantly outperforms baselines in erasure efficacy while preserving general generation quality. Crucially, it maintains persistent hallucination suppression against relearning and parameter updates, validating the effectiveness of geometric stabilization.
Large language models (LLMs) show promise in clinical decision support yet risk acquiescing to patient pressure for inappropriate care. We introduce SycoEval-EM, a multi-agent simulation framework evaluating LLM robustness through adversarial patient persuasion in emergency medicine. Across 20 LLMs and 1,875 encounters spanning three Choosing Wisely scenarios, acquiescence rates ranged from 0-100\%. Models showed higher vulnerability to imaging requests (38.8\%) than opioid prescriptions (25.0\%), with model capability poorly predicting robustness. All persuasion tactics proved equally effective (30.0-36.0\%), indicating general susceptibility rather than tactic-specific weakness. Our findings demonstrate that static benchmarks inadequately predict safety under social pressure, necessitating multi-turn adversarial testing for clinical AI certification.
Large language models (LLMs) and high-capacity encoders have advanced zero and few-shot classification, but their inference cost and latency limit practical deployment. We propose training lightweight text classifiers using dynamically generated supervision from an LLM. Our method employs an iterative, agentic loop in which the LLM curates training data, analyzes model successes and failures, and synthesizes targeted examples to address observed errors. This closed-loop generation and evaluation process progressively improves data quality and adapts it to the downstream classifier and task. Across four widely used benchmarks, our approach consistently outperforms standard zero and few-shot baselines. These results indicate that LLMs can serve effectively as data curators, enabling accurate and efficient classification without the operational cost of large-model deployment.
We investigate whether high-frequency key collisions are a primary bottleneck in Engram-style conditional memory. To isolate the effect of collisions, we introduce Engram-Nine, a collision-free hot-tier extension that maps the most frequent n-grams through a Minimal Perfect Hash Function (MPHF) while retaining the original multi-head hashed lookup as a cold tier. Under a strictly iso-parameter setup, the collision-free design does not consistently improve validation loss. Through route-stratified evaluation (decomposing per-token loss into hot/cold contributions), we uncover a consistent "hot-to-cold advantage flip" during training: hot (high-frequency) positions initially have lower loss, but cold positions eventually surpass them. Crucially, collision-free configurations flip earlier than collision-prone baselines, suggesting that collisions act as implicit regularization. We also identify a gating mismatch: the gate learns to favor hot positions early in training, but this preference persists even after the flip, assigning higher weights to positions with higher loss. Our findings suggest that improving lookup precision alone does not guarantee better training outcomes. The dominant limitation may lie in gating credit assignment rather than index accuracy, and collision-induced noise may provide beneficial regularization that should not be naively eliminated.
Single-view indoor scene generation plays a crucial role in a range of real-world applications. However, generating a complete 360° scene from a single image remains a highly ill-posed and challenging problem. Recent approaches have made progress by leveraging diffusion models and depth estimation networks, yet they still struggle to maintain appearance consistency and geometric plausibility under large viewpoint changes, limiting their effectiveness in full-scene generation. To address this, we propose AnchoredDream, a novel zero-shot pipeline that anchors 360° scene generation on high-fidelity geometry via an appearance-geometry mutual boosting mechanism. Given a single-view image, our method first performs appearance-guided geometry generation to construct a reliable 3D scene layout. Then, we progressively generate the complete scene through a series of modules: warp-and-inpaint, warp-and-refine, post-optimization, and a novel Grouting Block, which ensures seamless transitions between the input view and generated regions. Extensive experiments demonstrate that AnchoredDream outperforms existing methods by a large margin in both appearance consistency and geometric plausibility--all in a zero-shot manner. Our results highlight the potential of geometric grounding for high-quality, zero-shot single-view scene generation.
The development of wireless power transfer (WPT) and Internet of Things (IoT) offers significant potential but faces challenges such as limited energy supply, dynamic environmental changes, and unstable transmission links. This paper presents an unmanned aerial vehicle (UAV)-assisted data collection and WPT scheme to support batteryless sensor (BLS) networks in remote areas. In this system, BLSs harvest energy from the UAV and utilize the harvested energy to transmit the collected data back to the UAV. The goal is to maximize the collected data volume and fairness index while minimizing the UAV energy consumption. To achieve these objectives, an optimization problem is formulated to jointly optimize the transmit power and UAV trajectory. Due to the non-convexity and dynamic nature of the problem, a deep reinforcement learning (DRL)-based algorithm is proposed to solve the problem. Specifically, this algorithm integrates prioritized experience replay and the performer module to enhance system stability and accelerate convergence. Simulation results demonstrate that the proposed approach consistently outperforms benchmark schemes in terms of collected data volume, fairness, and UAV energy consumption.
As Large Language Models (LLMs) scale, weight-only quantization (W4A16: 4-bit weights, 16-bit activations) becomes critical for reducing memory footprint with minimal accuracy loss. However, its efficient deployment on Huawei's Ascend 910 Neural Processing Unit (NPU) is challenging due to limited native mixed-precision support and the accelerator's decoupled compute architecture. To enable quantization on such architecture, we present the first practical W4A16 matrix multiplication kernel tailored for the Ascend 910 NPU. Our design leverages vector cores for on-the-fly INT4-to-FP16 dequantization, cube cores for high-throughput GEMM, and Split-K parallelization to mitigate memory latency. Performance evaluations across diverse matrix shapes and batch sizes show our method outperforms data-parallel approaches when K >> N, a typical scenario in LLM decoding. Specially, our method can achieve a speedup ranging from 1.01x to 1.74x. In addition, our profile reveals the primary bottleneck is not dequantization compution itself, but extra global memory transfer for the weight, making W4A16 only reaching a maximum speedup of 1.48x over native FP16xFP16 matrix multiplication in PyTorch. In the long run, our method lays a solid foundation and provides insightful views for the efficient deployment of quantized large language models on various domain-specific accelerators.
In recent years, researchers have increasingly been interested in how to enable Multimodal Large Language Models (MLLM) to possess spatial understanding and reasoning capabilities. However, most existing methods overlook the importance of the ability to continuously work in an ever-changing world, and lack the possibility of deployment on embodied systems in real-world environments. In this work, we introduce OnlineSI, a framework that can continuously improve its spatial understanding of its surroundings given a video stream. Our core idea is to maintain a finite spatial memory to retain past observations, ensuring the computation required for each inference does not increase as the input accumulates. We further integrate 3D point cloud information with semantic information, helping MLLM to better locate and identify objects in the scene. To evaluate our method, we introduce the Fuzzy $F_1$-Score to mitigate ambiguity, and test our method on two representative datasets. Experiments demonstrate the effectiveness of our method, paving the way towards real-world embodied systems.
Audio Large Language Models (Audio LLMs) have demonstrated strong capabilities in integrating speech perception with language understanding. However, whether their internal representations align with human neural dynamics during naturalistic listening remains largely unexplored. In this work, we systematically examine layer-wise representational alignment between 12 open-source Audio LLMs and Electroencephalogram (EEG) signals across 2 datasets. Specifically, we employ 8 similarity metrics, such as Spearman-based Representational Similarity Analysis (RSA), to characterize within-sentence representational geometry. Our analysis reveals 3 key findings: (1) we observe a rank-dependence split, in which model rankings vary substantially across different similarity metrics; (2) we identify spatio-temporal alignment patterns characterized by depth-dependent alignment peaks and a pronounced increase in RSA within the 250-500 ms time window, consistent with N400-related neural dynamics; (3) we find an affective dissociation whereby negative prosody, identified using a proposed Tri-modal Neighborhood Consistency (TNC) criterion, reduces geometric similarity while enhancing covariance-based dependence. These findings provide new neurobiological insights into the representational mechanisms of Audio LLMs.
Hierarchical open-set classification handles previously unseen classes by assigning them to the most appropriate high-level category in a class taxonomy. We extend this paradigm to the semi-supervised setting, enabling the use of large-scale, uncurated datasets containing a mixture of known and unknown classes to improve the hierarchical open-set performance. To this end, we propose a teacher-student framework based on pseudo-labeling. Two key components are introduced: 1) subtree pseudo-labels, which provide reliable supervision in the presence of unknown data, and 2) age-gating, a mechanism that mitigates overconfidence in pseudo-labels. Experiments show that our framework outperforms self-supervised pretraining followed by supervised adaptation, and even matches the fully supervised counterpart when using only 20 labeled samples per class on the iNaturalist19 benchmark. Our code is available at this https URL.
Large Audio Language Models (LALMs) have garnered significant research interest. Despite being built upon text-based large language models (LLMs), LALMs frequently exhibit a degradation in knowledge and reasoning capabilities. We hypothesize that this limitation stems from the failure of current training paradigms to effectively bridge the acoustic-semantic gap within the feature representation space. To address this challenge, we propose CORD, a unified alignment framework that performs online cross-modal self-distillation. Specifically, it aligns audio-conditioned reasoning with its text-conditioned counterpart within a unified model. Leveraging the text modality as an internal teacher, CORD performs multi-granularity alignment throughout the audio rollout process. At the token level, it employs on-policy reverse KL divergence with importance-aware weighting to prioritize early and semantically critical tokens. At the sequence level, CORD introduces a judge-based global reward to optimize complete reasoning trajectories via Group Relative Policy Optimization (GRPO). Empirical results across multiple benchmarks demonstrate that CORD consistently enhances audio-conditioned reasoning and substantially bridges the audio-text performance gap with only 80k synthetic training samples, validating the efficacy and data efficiency of our on-policy, multi-level cross-modal alignment approach.
The combination of multimodal Vision-Language Models (VLMs) and Large Language Models (LLMs) opens up new possibilities for medical classification. This work offers a rigorous, unified benchmark by using four publicly available datasets covering text and image modalities (binary and multiclass complexity) that contrasts traditional Machine Learning (ML) with contemporary transformer-based techniques. We evaluated three model classes for each task: Classical ML (LR, LightGBM, ResNet-50), Prompt-Based LLMs/VLMs (Gemini 2.5), and Fine-Tuned PEFT Models (LoRA-adapted Gemma3 variants). All experiments used consistent data splits and aligned metrics. According to our results, traditional machine learning (ML) models set a high standard by consistently achieving the best overall performance across most medical categorization tasks. This was especially true for structured text-based datasets, where the classical models performed exceptionally well. In stark contrast, the LoRA-tuned Gemma variants consistently showed the worst performance across all text and image experiments, failing to generalize from the minimal fine-tuning provided. However, the zero-shot LLM/VLM pipelines (Gemini 2.5) had mixed results; they performed poorly on text-based tasks, but demonstrated competitive performance on the multiclass image task, matching the classical ResNet-50 baseline. These results demonstrate that in many medical categorization scenarios, established machine learning models continue to be the most reliable option. The experiment suggests that foundation models are not universally superior and that the effectiveness of Parameter-Efficient Fine-Tuning (PEFT) is highly dependent on the adaptation strategy, as minimal fine-tuning proved detrimental in this study.
Nonlinear dimensionality reduction techniques, particularly UMAP, are widely used for visualizing high-dimensional data. However, UMAP's local Euclidean distance assumption often fails to capture intrinsic manifold geometry, leading to topological tearing and structural collapse. We identify UMAP's sensitivity to the k-nearest neighbor graph as a key cause. To address this, we introduce Ollivier-Ricci curvature as a geometric prior, reinforcing edges at geometric bottlenecks and reducing redundant links. Since curvature estimation is noise-sensitive, we also incorporate a topological prior using Jaccard similarity to ensure neighborhood consistency. The resulting method, JORC-UMAP, better distinguishes true manifold structure from spurious connections. Experiments on synthetic and real-world datasets show that JORC-UMAP reduces tearing and collapse more effectively than standard UMAP and other DR methods, as measured by SVM accuracy and triplet preservation scores, while maintaining computational efficiency. This work offers a geometry-aware enhancement to UMAP for more faithful data visualization.
Fact-checking aims to verify the truthfulness of a claim based on the retrieved evidence. Existing methods typically follow a decomposition paradigm, in which a claim is broken down into sub-claims that are individually verified. However, the decomposition paradigm may introduce noise to the verification process due to irrelevant entities or evidence, ultimately degrading verification accuracy. To address this problem, we propose a Retrieve-Refine-Calibrate (RRC) framework based on large language models (LLMs). Specifically, the framework first identifies the entities mentioned in the claim and retrieves evidence relevant to them. Then, it refines the retrieved evidence based on the claim to reduce irrelevant information. Finally, it calibrates the verification process by re-evaluating low-confidence predictions. Experiments on two popular fact-checking datasets (HOVER and FEVEROUS-S) demonstrate that our framework achieves superior performance compared with competitive baselines.
Generative Sequential Recommendation (GSR) has emerged as a promising paradigm, reframing recommendation as an autoregressive sequence generation task over discrete Semantic IDs (SIDs), typically derived via codebook-based quantization. Despite its great potential in unifying retrieval and ranking, existing GSR frameworks still face two critical limitations: (1) impure and unstable semantic tokenization, where quantization methods struggle with interaction noise and codebook collapse, resulting in SIDs with ambiguous discrimination; and (2) lossy and weakly structured generation, where reliance solely on coarse-grained discrete tokens inevitably introduces information loss and neglects items' hierarchical logic. To address these issues, we propose a novel generative recommendation framework, PRISM, with Purified Representation and Integrated Semantic Modeling. Specifically, to ensure high-quality tokenization, we design a Purified Semantic Quantizer that constructs a robust codebook via adaptive collaborative denoising and hierarchical semantic anchoring mechanisms. To compensate for information loss during quantization, we further propose an Integrated Semantic Recommender, which incorporates a dynamic semantic integration mechanism to integrate fine-grained semantics and enforces logical validity through a semantic structure alignment objective. PRISM consistently outperforms state-of-the-art baselines across four real-world datasets, demonstrating substantial performance gains, particularly in high-sparsity scenarios.
Emerging safety-critical Vehicle-to-Everything (V2X) applications require networks to proactively adapt to rapid environmental changes rather than merely reacting to them. While Network Digital Twins (NDTs) offer a pathway to such predictive capabilities, existing solutions typically struggle to reconcile high-fidelity physical modeling with strict real-time constraints. This paper presents a novel, end-to-end real-time V2X Digital Twin framework that integrates live mobility tracking with deterministic channel simulation. By coupling the Tokyo Mobility Digital Twin-which provides live sensing and trajectory forecasting-with VaN3Twin-a full-stack simulator with ray tracing-we enable the prediction of network performance before physical events occur. We validate this approach through an experimental proof-of-concept deployed in Tokyo, Japan, featuring connected vehicles operating on 60 GHz links. Our results demonstrate the system's ability to predict Received Signal Strength (RSSI) with a maximum average error of 1.01 dB and reliably forecast Line-of-Sight (LoS) transitions within a maximum average end-to-end system latency of 250 ms, depending on the ray tracing level of detail. Furthermore, we quantify the fundamental trade-offs between digital model fidelity, computational latency, and trajectory prediction horizons, proving that high-fidelity and predictive digital twins are feasible in real-world urban environments.
Eclipse attacks isolate blockchain nodes by monopolizing their peer-to-peer connections. The attacks were extensively studied in Bitcoin (SP'15, SP'20, CCS'21, SP'23) and Monero (NDSS'25), but their practicality against Ethereum nodes remains underexplored, particularly in the post-Merge settings. We present the first end-to-end implementation of an eclipse attack targeting Ethereum (2.0 version) execution-layer nodes. Our attack exploits the bootstrapping and peer management logic of Ethereum to fully isolate a node upon restart. We introduce a multi-stage strategy that majorly includes (i) poisoning the node's discovery table via unsolicited messages, (ii) infiltrating Ethereum's DNS-based peerlist by identifying and manipulating the official DNS crawler, and (iii) hijacking idle incoming connection slots across the network to block benign connections. Our DNS list poisoning is the first in the cryptocurrency context and requires only 28 IP addresses over 100 days. Slots hijacking raises outgoing redirection success from 45\% to 95\%. We validate our approach through controlled experiments on Ethereum's Sepolia testnet and broad measurements on the mainnet. Our findings demonstrate that over 80\% of public nodes do not leave sufficient idle capacity for effective slots occupation, highlighting the feasibility and severity of the threat. We further propose concrete countermeasures and responsibly disclosed all findings to Ethereum's security team.
This work proposes neural training as a \emph{process tensor}: a multi-time map that takes a sequence of controllable instruments (batch choices, augmentations, optimizer micro-steps) and returns an observable of the trained model. Building on this operational lens, we introduce a simple, model-agnostic witness of training memory based on \emph{back-flow of distinguishability}. In a controlled two-step protocol, we compare outcome distributions after one intervention versus two; the increase $\Delta_{\mathrm{BF}} = D_2 - D_1>0$ (with $D\in\{\mathrm{TV}, \mathrm{JS}, \mathrm{H}\}$ measured on softmax predictions over a fixed probe set) certifies non-Markovianity. We observe consistent positive back-flow with tight bootstrap confidence intervals, amplification under higher momentum, larger batch overlap, and more micro-steps, and collapse under a \emph{causal break} (resetting optimizer state), directly attributing the effect to optimizer/data-state memory. The witness is robust across TV/JS/Hellinger, inexpensive to compute, and requires no architectural changes. We position this as a \emph{measurement} contribution: a principled diagnostic and empirical evidence that practical SGD deviates from the Markov idealization. An exploratory case study illustrates how the micro-level signal can inform curriculum orderings. "Data order matters" turns into a testable operator with confidence bounds, our framework offers a common stage to compare optimizers, curricula, and schedules through their induced training memory.
Future sixth-generation (6G) networks are expected to support low-altitude wireless networks (LAWNs), where unmanned aerial vehicles (UAVs) and aerial robots operate in highly dynamic three-dimensional environments under stringent latency, reliability, and autonomy requirements. In such scenarios, autonomous task execution at the network edge demands holistic coordination among sensing, communication, computing, and control (SC3) processes. Agentic Artificially Intelligent Radio Access Networks (Agentic AI-RAN) offer a promising paradigm by enabling the edge network to function as an autonomous decision-making entity for low-altitude agents with limited onboard resources. In this article, we propose and design a task-oriented Agentic AI-RAN architecture that enables SC3 task execution within a single edge node. This integrated design tackles the fundamental problem of coordinating heterogeneous workloads in resource-constrained edge environments. Furthermore, a representative low-altitude embodied intelligence system is prototyped based on a general-purpose Graphics Processing Unit (GPU) platform to demonstrate autonomous drone navigation in realistic settings. By leveraging the Multi-Instance GPU (MIG) partitioning technique and the containerized deployment, the demonstration system achieves physical resource isolation while supporting tightly coupled coordination between real-time communication and multimodal inference under a unified task framework. Experimental results demonstrate low closed-loop latency, robust bidirectional communication, and stable performance under dynamic runtime conditions, highlighting its viability for mission-critical low-altitude wireless networks in 6G.
Venture capital (VC) investments in early-stage startups that end up being successful can yield high returns. However, predicting early-stage startup success remains challenging due to data scarcity (e.g., many VC firms have information about only a few dozen of early-stage startups and whether they were successful). This limits the effectiveness of traditional machine learning methods that rely on large labeled datasets for model training. To address this challenge, we propose an in-context learning framework for startup success prediction using large language models (LLMs) that requires no model training and leverages only a small set of labeled startups as demonstration examples. Specifically, we propose a novel k-nearest-neighbor-based in-context learning framework, called kNN-ICL, which selects the most relevant past startups as examples based on similarity. Using real-world profiles from Crunchbase, we find that the kNN-ICL approach achieves higher prediction accuracy than supervised machine learning baselines and vanilla in-context learning. Further, we study how performance varies with the number of in-context examples and find that a high balanced accuracy can be achieved with as few as 50 examples. Together, we demonstrate that in-context learning can serve as a decision-making tool for VC firms operating in data-scarce environments.
The inverse of the star discrepancy, $N(\epsilon, s)$, defined as the minimum number of points required to achieve a star discrepancy of at most $\epsilon$ in dimension $s$, is known to depend linearly on $s$. However, explicit constructions achieving this optimal linear dependence remain elusive. Recently, Dick and Pillichshammer (2025) made significant progress by showing that a multiset union of randomly digitally shifted Korobov polynomial lattice point sets almost achieve the optimal dimension dependence with high probability. In this paper, we investigate the analog of this result in the setting of classical integer arithmetic using Fourier analysis. We analyze point sets constructed as multiset unions of Korobov rank-1 lattice point sets modulo a prime $N$. We provide a comprehensive analysis covering four distinct construction scenarios, combining either random or fixed integer generators with either continuous torus shifts or discrete grid shifts. We prove that in all four cases, the star discrepancy is bounded by a term of order $O(s \log(N_{tot}) / \sqrt{N_{tot}})$ with high probability, where $N_{tot}$ is the total number of points. This implies that the inverse of the star discrepancy for these structured sets depends quadratically on the dimension $s$. While the proofs are probabilistic, our results significantly reduce the search space for optimal point sets from a continuum to a finite set of candidates parameterized by integer generators and random shifts.
Remote sensing change detection (RSCD) aims to identify the spatio-temporal changes of land cover, providing critical support for multi-disciplinary applications (e.g., environmental monitoring, disaster assessment, and climate change studies). Existing methods focus either on extracting features from localized patches, or pursue processing entire images holistically, which leads to the cross temporal feature matching deviation and exhibiting sensitivity to radiometric and geometric noise. Following the above issues, we propose a dual-module collaboration guided hierarchical adaptive aggregation framework, namely HA2F, which consists of dynamic hierarchical feature calibration module (DHFCM) and noise-adaptive feature refinement module (NAFRM). The former dynamically fuses adjacent-level features through perceptual feature selection, suppressing irrelevant discrepancies to address multi-temporal feature alignment deviations. The NAFRM utilizes the dual feature selection mechanism to highlight the change sensitive regions and generate spatial masks, suppressing the interference of irrelevant regions or shadows. Extensive experiments verify the effectiveness of the proposed HA2F, which achieves state-of-the-art performance on LEVIR-CD, WHU-CD, and SYSU-CD datasets, surpassing existing comparative methods in terms of both precision metrics and computational efficiency. In addition, ablation experiments show that DHFCM and NAFRM are effective. \href{this https URL}{HA2F Official Code is Available Here!}
We present a reproducible benchmark for evaluating sim-to-real transfer of Multi-Agent Reinforcement Learning (MARL) policies for Connected and Automated Vehicles (CAVs). The platform, based on the Cyber-Physical Mobility Lab (CPM Lab) [1], integrates simulation, a high-fidelity digital twin, and a physical testbed, enabling structured zero-shot evaluation of MARL motion-planning policies. We demonstrate its use by deploying a SigmaRL-trained policy [2] across all three domains, revealing two complementary sources of performance degradation: architectural differences between simulation and hardware control stacks, and the sim-to-real gap induced by increasing environmental realism. The open-source setup enables systematic analysis of sim-to-real challenges in MARL under realistic, reproducible conditions.
We consider the problem of fairly allocating a set of indivisible goods among agents with additive valuations. Ex-ante fairness (proportionality) can trivially be obtained by giving all goods to a random agent. Yet, such an allocation is very unfair ex-post. This has motivated the Best-of-Both-Worlds (BoBW) approach, seeking a randomized allocation that is ex-ante proportional and is supported only on ex-post fair allocations (e.g., on allocations that are envy-free-up-to-one-good (EF1), or give some constant fraction of the maximin share (MMS)). It is commonly pointed out that the distribution that allocates all goods to one agent at random fails to be ex-post fair as it ignores the variances of the values of the agents. We examine the approach of trying to mitigate this problem by minimizing the sum-of-variances of the values of the agents, subject to ex-ante proportionality. We study the ex-post fairness properties of the resulting distributions. In support of this approach, observe that such an optimization will indeed deterministically output a proportional allocation if such exists. We show that when valuations are identical, this approach indeed guarantees fairness ex-post: all allocations in the support are envy-free-up-to-any-good (EFX), and thus guarantee every agent at least 4/7 of her maximin share (but not her full MMS). On the negative side, we show that this approach completely fails when valuations are not identical: even in the simplest setting of only two agents and two goods, when the additive valuations are not identical, there is positive probability of allocating both goods to the same agent. Thus, the supporting ex-post allocation might not even be EF1, and might not give an agent any constant fraction of her MMS. Finally, we present similar negative results for other natural minimization objectives that are based on variances.
Composed Video Retrieval (CoVR) facilitates video retrieval by combining visual and textual queries. However, existing CoVR frameworks typically fuse multimodal inputs in a single stage, achieving only marginal gains over initial baseline. To address this, we propose a novel CoVR framework that leverages the representational power of Vision Language Models (VLMs). Our framework incorporates a novel cross-attention module X-Aligner, composed of cross-attention layers that progressively fuse visual and textual inputs and align their multimodal representation with that of the target video. To further enhance the representation of the multimodal query, we incorporate the caption of the visual query as an additional input. The framework is trained in two stages to preserve the pretrained VLM representation. In the first stage, only the newly introduced module is trained, while in the second stage, the textual query encoder is also fine-tuned. We implement our framework on top of BLIP-family architecture, namely BLIP and BLIP-2, and train it on the Webvid-CoVR data set. In addition to in-domain evaluation on Webvid-CoVR-Test, we perform zero-shot evaluations on the Composed Image Retrieval (CIR) data sets CIRCO and Fashion-IQ. Our framework achieves state-of-the-art performance on CoVR obtaining a Recall@1 of 63.93% on Webvid-CoVR-Test, and demonstrates strong zero-shot generalization on CIR tasks.
Conversational agents are increasingly used in education for learning support. An application is "learning by explaining", where learners explain their understanding to an agent. However, existing research focuses on single roles, leaving it unclear how different pedagogical roles influence learners' interaction patterns, learning outcomes and experiences. We conducted a between-subjects study (N=96) comparing agents with three pedagogical roles (Tutee, Peer, Challenger) and a control condition while learning an economics concept. We found that different pedagogical roles shaped learning dynamics, including interaction patterns and experiences. Specifically, the Tutee agent elicited the most cognitive investment but led to high pressure. The Peer agent fostered high absorption and interest through collaborative dialogue. The Challenger agent promoted cognitive and metacognitive acts, enhancing critical thinking with moderate pressure. The findings highlight how agent roles shape different learning dynamics, guiding the design of educational agents tailored to specific pedagogical goals and learning phases.
Neuromorphic computing mimics brain-inspired mechanisms through spiking neurons and energy-efficient processing, offering a pathway to efficient in-memory computing (IMC). However, these advancements raise critical security and privacy concerns. As the adoption of bio-inspired architectures and memristive devices increases, so does the urgency to assess the vulnerability of these emerging technologies to hardware and software attacks. Emerging architectures introduce new attack surfaces, particularly due to asynchronous, event-driven processing and stochastic device behavior. The integration of memristors into neuromorphic hardware and software implementations in spiking neural networks offers diverse possibilities for advanced computing architectures, including their role in security-aware applications. This survey systematically analyzes the security landscape of neuromorphic systems, covering attack methodologies, side-channel vulnerabilities, and countermeasures. We focus on both hardware and software concerns relevant to spiking neural networks (SNNs) and hardware primitives, such as Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) for cryptographic and secure computation applications. We approach this analysis from diverse perspectives, from attack methodologies to countermeasure strategies that integrate efficiency and protection in brain-inspired hardware. This review not only maps the current landscape of security threats but provides a foundation for developing secure and trustworthy neuromorphic architectures.
While exact and approximate Riemann solvers are widely used, they exhibit two fundamental limitations: 1) Fail to represent continuous entropy transport processes, resulting in thermodynamic incompatibility that limits their applicability to compressible flows. 2) Consider only the effects of normal components at interfaces while neglecting the effects of tangential flux and source term, making them unsuitable for multidimensional problems and cases involving source terms. These limitations persist in Riemann problem-based ghost fluid methods. To address these challenges, we developed a novel spatiotemporal coupling high-resolution ghost fluid method featuring two key advancements: 1) Integration of nonlinear geometrical optics to properly account for thermodynamic entropy evolution. 2) Implementation of the Lax-Wendroff/Cauchy-Kowalevski approach to incorporate tangential fluxes and source term effects. These enhancements have been systematically applied to Riemann problem-based ghost fluid methods. Comprehensive numerical experiments demonstrate significant improvements in simulation accuracy and robustness compared to conventional approaches.
Train delays result from complex interactions between operational, technical, and environmental factors. While weather impacts railway reliability, particularly in Nordic regions, existing datasets rarely integrate meteorological information with operational train data. This study presents the first publicly available dataset combining Finnish railway operations with synchronized meteorological observations from 2018-2024. The dataset integrates operational metrics from Finland Digitraffic Railway Traffic Service with weather measurements from 209 environmental monitoring stations, using spatial-temporal alignment via Haversine distance. It encompasses 28 engineered features across operational variables and meteorological measurements, covering approximately 38.5 million observations from Finland's 5,915-kilometer rail network. Preprocessing includes strategic missing data handling through spatial fallback algorithms, cyclical encoding of temporal features, and robust scaling of weather data to address sensor outliers. Analysis reveals distinct seasonal patterns, with winter months exhibiting delay rates exceeding 25\% and geographic clustering of high-delay corridors in central and northern Finland. Furthermore, the work demonstrates applications of the data set in analysing the reliability of railway traffic in Finland. A baseline experiment using XGBoost regression achieved a Mean Absolute Error of 2.73 minutes for predicting station-specific delays, demonstrating the dataset's utility for machine learning applications. The dataset enables diverse applications, including train delay prediction, weather impact assessment, and infrastructure vulnerability mapping, providing researchers with a flexible resource for machine learning applications in railway operations research.
We derive a few extended versions of the Kraft inequality for information lossless finite-state encoders. The main basic contribution is in defining a notion of a Kraft matrix and in establishing the fact that a necessary condition for information losslessness of a finite-state encoder is that none of the eigenvalues of this matrix have modulus larger than unity, or equivalently, the generalized Kraft inequality asserts that the spectral radius of the Kraft matrix cannot exceed one. For the important special case where the FS encoder is irreducible, we derive several equivalent forms of this inequality, which are based on well known formulas for spectral radius. It also turns out that in the irreducible case, Kraft sums are bounded by a constant, independent of the block length, and thus cannot grow even in any subexponential rate. Finally, two extensions are outlined - one concerns the case of side information available to both encoder and decoder, and the other is for lossy compression.
As the development of Large Language Models (LLMs) shifts from parameter scaling to inference-time collaboration, the Mixture-of-Agents (MoA) framework has emerged as a general paradigm to harness collective intelligence by layering diverse models. While recent MoA variants have introduced dynamic routing and residual connections to improve efficiency, these methods often fail to facilitate deep semantic interaction between agents, limiting the system's ability to actively correct hallucinations and refine logic. In this paper, we introduce Attention-MoA, a novel MoA-based framework that redefines collaboration through Inter-agent Semantic Attention. Complemented by an Inter-layer Residual Module with Adaptive Early Stopping Mechanism, our architecture mitigates information degradation in deep layers while improving computational efficiency. Extensive evaluations across AlpacaEval 2.0, MT-Bench, and FLASK demonstrate that Attention-MoA significantly outperforms state-of-the-art baselines, achieving a 91.15% Length-Controlled Win Rate on AlpacaEval 2.0 and dominating in 10 out of 12 capabilities on FLASK. Notably, Attention-MoA enables an ensemble of small open-source models to outperform massive proprietary models like Claude-4.5-Sonnet and GPT-4.1, achieving an MT-Bench score of 8.83 and an AlpacaEval 2.0 LC Win Rate of 77.36%.
The deep neural network multigrid solver (DNN-MG) combines a coarse-grid finite element simulation with a deep neural network that corrects the solution on finer grid levels, thereby improving the computational efficiency. In this work, we discuss various design choices for the DNN-MG method and demonstrate significant improvements in accuracy and generalizability when applied to the solution of the instationary Navier-Stokes equations. We investigate the stability of the hybrid simulation and show how the neural networks can be made more robust with the help of replay buffers. By retraining on data derived from the hybrid simulation, the error caused by the neural network over multiple time-steps can be minimized without the need for a differentiable numerical solver. Furthermore, we compare multiple neural network architectures, including recurrent neural networks and Transformers, and study their ability to utilize more information from an increased temporal and spatial receptive field. Transformers allow us to make use of information from cells outside the predicted patch even with unstructured meshes while maintaining the locality of our approach. This can further improve the accuracy of DNN-MG without a significant impact on performance.
This work is motivated by the long-standing open problem of designing asymptotically order-optimal aperiodic polyphase sequence sets with respect to the celebrated Welch bound. Attempts were made by Mow over 30 years ago, but a comprehensive understanding to this problem is lacking. Our first key contribution is an explicit upper bound of generalized quadratic Gauss sums which is obtained by recursively applying Paris' asymptotic expansion and then bounding it by leveraging the fast convergence property of the Fibonacci zeta function. Building upon this major finding, our second key contribution includes four systematic constructions of order-optimal sequence sets with low aperiodic correlation and/or ambiguity properties via carefully selected Chu sequences and Alltop sequences. For the first time in the literature, we reveal that the full Alltop sequence set is asymptotically optimal for its low aperiodic correlation sidelobes. Besides, we introduce a novel subset of Alltop sequences possessing both order-optimal aperiodic correlation and ambiguity properties for the entire time-shift window.
Mamba, a selective state-space model (SSM), has emerged as an efficient alternative to Transformers for speech modeling, enabling long-sequence processing with linear complexity. While effective in speech separation, existing approaches, whether in the time or time-frequency domain, typically decompose the input along a single dimension into short one-dimensional sequences before processing them with Mamba, which restricts it to local 1D modeling and limits its ability to capture global dependencies across the 2D spectrogram. In this work, we propose an efficient omni-directional attention (OA) mechanism built upon unidirectional Mamba, which models global dependencies from ten different directions on the spectrogram. We expand the proposed mechanism into two baseline separation models and evaluate on three public datasets. Experimental results show that our approach consistently achieves significant performance gains over the baselines while preserving linear complexity, outperforming existing state-of-the-art (SOTA) systems.
Intelligent medical image analysis is essential for clinical decision support but is often limited by scarce annotations, constrained computational resources, and suboptimal model generalization. To address these challenges, we propose a lightweight medical image classification framework that integrates self-supervised contrastive learning with quantum-enhanced feature modeling. MobileNetV2 is employed as a compact backbone and pretrained using a SimCLR-style self-supervised paradigm on unlabeled images. A lightweight parameterized quantum circuit (PQC) is embedded as a quantum feature enhancement module, forming a hybrid classical-quantum architecture, which is subsequently fine-tuned on limited labeled data. Experimental results demonstrate that, with only approximately 2-3 million parameters and low computational cost, the proposed method consistently outperforms classical baselines without self-supervised learning or quantum enhancement in terms of Accuracy, AUC, and F1-score. Feature visualization further indicates improved discriminability and representation stability. Overall, this work provides a practical and forward-looking solution for high-performance medical artificial intelligence under resource-constrained settings.
The most common instruments currently measuring active/reactive energy and power quality indicators are smart energy meters. Unfortunately, the verification of such meters is currently performed under ideal conditions or with simple signal models, which do not recreate actual states occurring in the power grid and do not ensure the verification of the properties of their signal chains. This paper presents challenges in the proper metrological verification of smart energy meters. It presents existing legal and normative requirements and scientific research directions regarding these meters. Selected test results are presented, which show that although the tested meters meet the normative and legal requirements because they have been approved for sale, numerous imperfections in the signal and measurement chains of the analyzed instruments are revealed for the selected test signal. On the basis of the presented research results, further directions of research in the field of smart energy meters have been determined.
Term Coding asks: given a finite system of term identities $\Gamma$ in $v$ variables, how large can its solution set be on an $n$--element alphabet, when we are free to choose the interpretations of the function symbols? This turns familiar existence problems for quasigroups, designs, and related objects into quantitative extremal questions. We prove a guessing-number sandwich theorem that connects term coding to graph guessing numbers (graph entropy). After explicit normalisation and diversification reductions, every instance yields a canonical directed dependency structure with guessing number $\alpha$ such that the maximum code size satisfies $\log_n \Sn(\Gamma)=\alpha+o(1)$ (equivalently, $\Sn(\Gamma)=n^{\alpha+o(1)}$), and $\alpha$ can be bounded or computed using entropy and polymatroid methods. We illustrate the framework with examples from extremal combinatorics (Steiner-type identities, self-orthogonal Latin squares) and from information-flow / network-coding style constraints (including a five-cycle instance with fractional exponent and small storage/relay maps).
Recently, due to the advancement of multimodal technology, people are attempting to use visual large language models (VLLMs) in industrial production. Many deep learning models (DLMs) deployed in the production environment are gradually being replaced by VLLMs. Compared with DLMs, VLLMs have some advantages in industrial applications: (1) Their strong generalization ability enables them to perform well across a wide range of tasks. (2) They are flexible and can deal with unfamiliar samples through context learning quickly. However, VLLMs also have obvious drawbacks: (1) VLLMs do not perform as well as custom-developed DLMs in specific domains. (2) The number of parameters in VLLMs is generally quite large, and their deployment requires substantial computational resources. (3) VLLMs generally operate much slower than DLMs, making real-time response challenging to achieve. To better utilize VLLMs in industrial applications, we introduce AuroraEdge-V-2B in this work, a compact, robust, and high-speed VLLM designed for edge deployment. To make the model run faster, we also propose a compression-fusion method to improve inference efficiency. AuroraEdge-V-2B has the following notable features: (1) Easy deployment and faster: It has only 2B parameters and is highly suitable for edge deployment, offering better real-time performance. (2) Fewer visual tokens and cheaper: It significantly reduces the number of visual tokens in the decoding process, thereby reducing the floating-point operations by half during inference and making it cheaper to use. (3) Strong performance: It gets a higher score on 9 benchmarks than models with the same number of parameter (e.g., Qwen2-VL-2B, Qwen2.5-VL-3B, InternVL-2.5-2B).
Unmanned Aerial Vehicle (UAV) applications have become increasingly prevalent in aerial photography and object recognition. However, there are major challenges to accurately capturing small targets in object detection due to the imbalanced scale and the blurred edges. To address these issues, boundary and position information mining (BPIM) framework is proposed for capturing object edge and location cues. The proposed BPIM includes position information guidance (PIG) module for obtaining location information, boundary information guidance (BIG) module for extracting object edge, cross scale fusion (CSF) module for gradually assembling the shallow layer image feature, three feature fusion (TFF) module for progressively combining position and boundary information, and adaptive weight fusion (AWF) module for flexibly merging the deep layer semantic feature. Therefore, BPIM can integrate boundary, position, and scale information in image for small object detection using attention mechanisms and cross-scale feature fusion strategies. Furthermore, BPIM not only improves the discrimination of the contextual feature by adaptive weight fusion with boundary, but also enhances small object perceptions by cross-scale position fusion. On the VisDrone2021, DOTA1.0, and WiderPerson datasets, experimental results show the better performances of BPIM compared to the baseline Yolov5-P2, and obtains the promising performance in the state-of-the-art methods with comparable computation load.
Although Large Language Models (LLMs) excel in many tasks, their application to Speech-to-Speech Translation (S2ST) is underexplored and hindered by data scarcity. To bridge this gap, we propose PROST-LLM (PROgressive Speech-to-speech Translation) to enhance the S2ST capabilities in LLMs progressively. First, we fine-tune the LLMs with the CVSS corpus, employing designed tri-task learning and chain of modality methods to boost the initial performance. Then, leveraging the fine-tuned model, we generate preference pairs through self-sampling and back-translation without human evaluation. Finally, these preference pairs are used for preference optimization to enhance the model's S2ST capability further. Extensive experiments confirm the effectiveness of our proposed PROST-LLM in improving the S2ST capability of LLMs.
Large language model (LLM)-powered assistants have recently integrated memory mechanisms that record user preferences, leading to more personalized and user-aligned responses. However, irrelevant personalized memories are often introduced into the context, interfering with the LLM's intent understanding. To comprehensively investigate the dual effects of personalization, we develop RPEval, a benchmark comprising a personalized intent reasoning dataset and a multi-granularity evaluation protocol. RPEval reveals the widespread phenomenon of irrational personalization in existing LLMs and, through error pattern analysis, illustrates its negative impact on user experience. Finally, we introduce RP-Reasoner, which treats memory utilization as a pragmatic reasoning process, enabling the selective integration of personalized information. Experimental results demonstrate that our method significantly outperforms carefully designed baselines on RPEval, and resolves 80% of the bad cases observed in a large-scale commercial personalized assistant, highlighting the potential of pragmatic reasoning to mitigate irrational personalization. Our benchmark is publicly available at this https URL.
Equivariant Graph Neural Networks (EGNNs) have become a widely used approach for modeling 3D atomistic systems. However, mainstream architectures face critical scalability bottlenecks due to the explicit construction of geometric features or dense tensor products on \textit{every} edge. To overcome this, we introduce \textbf{E2Former-V2}, a scalable architecture that integrates algebraic sparsity with hardware-aware execution. We first propose \textbf{E}quivariant \textbf{A}xis-\textbf{A}ligned \textbf{S}parsification (EAAS). EAAS builds on Wigner-$6j$ convolution by exploiting an $\mathrm{SO}(3) \rightarrow \mathrm{SO}(2)$ change of basis to transform computationally expensive dense tensor contractions into efficient, sparse parity re-indexing operations. Building on this representation, we introduce \textbf{On-the-Fly Equivariant Attention}, a fully node-centric mechanism implemented via a custom fused Triton kernel. By eliminating materialized edge tensors and maximizing SRAM utilization, our kernel achieves a \textbf{20$\times$ improvement in TFLOPS} compared to standard implementations. Extensive experiments on the SPICE and OMol25 datasets demonstrate that E2Former-V2 maintains comparable predictive performance while notably accelerating inference. This work demonstrates that large equivariant transformers can be trained efficiently using widely accessible GPU platforms. The code is avalible at this https URL.
Social media data has been of interest to Natural Language Processing (NLP) practitioners for over a decade, because of its richness in information, but also challenges for automatic processing. Since language use is more informal, spontaneous, and adheres to many different sociolects, the performance of NLP models often deteriorates. One solution to this problem is to transform data to a standard variant before processing it, which is also called lexical normalization. There has been a wide variety of benchmarks and models proposed for this task. The MultiLexNorm benchmark proposed to unify these efforts, but it consists almost solely of languages from the Indo-European language family in the Latin script. Hence, we propose an extension to MultiLexNorm, which covers 5 Asian languages from different language families in 4 different scripts. We show that the previous state-of-the-art model performs worse on the new languages and propose a new architecture based on Large Language Models (LLMs), which shows more robust performance. Finally, we analyze remaining errors, revealing future directions for this task.
This paper studies a continuous-time joint sampling-and-preemption problem, incorporating sampling and preemption penalties under general service-time distributions. We formulate the system as an impulse-controlled piecewise-deterministic Markov process (PDMP) and derive coupled integral average-cost optimality equations via the dynamic programming principle, thereby avoiding the smoothness assumptions typically required for an average-cost Hamilton-Jacobi-Bellman quasi-variational inequality (HJB-QVI) characterization. A key invariance in the busy phase collapses the dynamics onto a one-dimensional busy-start boundary, reducing preemption control to an optimal stopping problem. Building on this structure, we develop an efficient policy iteration algorithm with heavy-tail acceleration, employing a hybrid (uniform/log-spaced) action grid and a far-field linear closure. Simulations under Pareto and log-normal service times demonstrate substantial improvements over AoI-optimal non-preemptive sampling and zero-wait baselines, achieving up to a 30x reduction in average cost in heavy-tailed regimes. Finally, simulations uncover a counterintuitive insight: under preemption, delay variance, despite typically being a liability, can become a strategic advantage for information freshness.
The growing demand for diverse and high-quality facial datasets for training and testing biometric systems is challenged by privacy regulations, data scarcity, and ethical concerns. Synthetic facial images offer a potential solution, yet existing generative models often struggle to balance realism, diversity, and identity preservation. This paper presents SCHIGAND, a novel synthetic face generation pipeline integrating StyleCLIP, HyperStyle, InterfaceGAN, and Diffusion models to produce highly realistic and controllable facial datasets. SCHIGAND enhances identity preservation while generating realistic intra-class variations and maintaining inter-class distinctiveness, making it suitable for biometric testing. The generated datasets were evaluated using ArcFace, a leading facial verification model, to assess their effectiveness in comparison to real-world facial datasets. Experimental results demonstrate that SCHIGAND achieves a balance between image quality and diversity, addressing key limitations of prior generative models. This research highlights the potential of SCHIGAND to supplement and, in some cases, replace real data for facial biometric applications, paving the way for privacy-compliant and scalable solutions in synthetic dataset generation.
We investigate the applications of ovals in projective planes to distributed storage, with a focus on the Service Rate Region problem. Leveraging the incidence relations between lines and ovals, we describe a class of non-systematic MDS matrices with a large number of small and disjoint recovery sets. For certain parameter choices, the service-rate region of these matrices contains the region of a systematic generator matrix for the same code, yielding better service performance. We further apply our construction to analyze the PIR properties of the considered MDS matrices and present a one-step majority-logic decoding algorithm with strong error-correcting capability. These results highlight how ovals, a classical object in finite geometry, re-emerge as a useful tool in modern coding theory.
Massively multilingual language models enable cross-lingual generalization but underperform on low-resource and unseen languages. While adapter-based fine-tuning offers a parameter-efficient solution, training language-specific adapters at scale remains costly. We introduce Typologically Informed Parameter Aggregation (TIPA), a training-free method that constructs proxy language adapters by aggregating existing ones, weighted by typological similarity. Integrated into the MAD-X framework, these proxies enable zero-shot cross-lingual transfer without additional training. We evaluate TIPA on five NLP tasks and over 230 languages. TIPA consistently outperforms or matches baselines such as English-only fine-tuning or selecting the typologically closest language adapter. We see the largest gains for languages lacking dedicated adapters. Our results demonstrate that typologically informed aggregation provides a viable alternative to language-specific modules without any training needed.
Time series forecasting has witnessed significant progress with deep learning. While prevailing approaches enhance forecasting performance by modifying architectures or introducing novel enhancement strategies, they often fail to dynamically disentangle and leverage the complex, intertwined temporal patterns inherent in time series, thus resulting in the learning of static, averaged representations that lack context-aware capabilities. To address this, we propose the Dual-Prototype Adaptive Disentanglement framework (DPAD), a model-agnostic auxiliary method that equips forecasting models with the ability of pattern disentanglement and context-aware adaptation. Specifically, we construct a Dynamic Dual-Prototype bank (DDP), comprising a common pattern bank with strong temporal priors to capture prevailing trend or seasonal patterns, and a rare pattern bank dynamically memorizing critical yet infrequent events, and then an Dual-Path Context-aware routing (DPC) mechanism is proposed to enhance outputs with selectively retrieved context-specific pattern representations from the DDP. Additionally, we introduce a Disentanglement-Guided Loss (DGLoss) to ensure that each prototype bank specializes in its designated role while maintaining comprehensive coverage. Comprehensive experiments demonstrate that DPAD consistently improves forecasting performance and reliability of state-of-the-art models across diverse real-world benchmarks.
Recent advancements enable fine-grained energy measurements in cloud-native environments (e.g., at container or process level) beyond traditional coarse-grained scopes. However, service-level energy measurement for microservice-based applications remains underexplored. Such measurements must include compute, network, and storage energy to avoid underestimating consumption in distributed setups. We present GOXN (Green Observability eXperiment eNginE), an energy experimentation engine for Kubernetes-based microservices that quantifies compute, network, and storage energy at the service level. Using GOXN, we evaluated the OpenTelemetry Demo under varying configurations (monitoring, tracing, service mesh) and steady synthetic load, collecting metrics from Kepler and cAdvisor. Our additive energy model derives service-level energy from container-level data. Results show that excluding network and storage can underestimate auxiliary-service energy by up to 63%, and that high tracing loads shift energy dominance toward network and storage.
Selected Basis Diagonalization (SBD) plays a central role in Sample-based Quantum Diagonalization (SQD), where iterative diagonalization of the Hamiltonian in selected configuration subspaces forms the dominant classical workload. We present a GPU-accelerated implementation of SBD using the Thrust library. By restructuring key components -- including configuration processing, excitation generation, and matrix-vector operations -- around fine-grained data-parallel primitives and flattened GPU-friendly data layouts, the proposed approach efficiently exploits modern GPU architectures. In our experiments, the Thrust-based SBD achieves up to $\sim$40$\times$ speedup over CPU execution and substantially reduces the total runtime of SQD iterations. These results demonstrate that GPU-native parallel primitives provide a simple, portable, and high-performance foundation for accelerating SQD-based quantum-classical workflows.
Researchers have identified various sources of tool positioning errors for articulated industrial robots and have proposed dedicated compensation strategies. However, these typically require individual, specialized experiments with separate models and identification procedures. This article presents a unified approach to the static calibration of industrial robots that identifies a robot model, including geometric and non-geometric effects (compliant bending, thermal deformation, gear transmission errors), using only a single, straightforward experiment for data collection. The model augments the kinematic chain with virtual joints for each modeled effect and realizes the identification using Gauss-Newton optimization with analytic gradients. Fisher information spectra show that the estimation is well-conditioned and the parameterization near-minimal, whereas systematic temporal cross-validation and model ablations demonstrate robustness of the model identification. The resulting model is very accurate and its identification robust, achieving a mean position error of 26.8 $\mu m$ on a KUKA KR30 industrial robot compared to 102.3 $\mu m$ for purely geometric calibration.
High-fidelity haptic feedback is essential for immersive virtual environments, yet authoring realistic tactile textures remains a significant bottleneck for designers. We introduce HapticMatch, a visual-to-tactile generation framework designed to democratize haptic content creation. We present a novel dataset containing precisely aligned pairs of micro-scale optical images, surface height maps, and friction-induced vibrations for 100 diverse materials. Leveraging this data, we explore and demonstrate that conditional generative models like diffusion and flow-matching can synthesize high-fidelity, renderable surface geometries directly from standard RGB photos. By enabling a "Scan-to-Touch" workflow, HapticMatch allows interaction designers to rapidly prototype multimodal surface sensations without specialized recording equipment, bridging the gap between visual and tactile immersion in VR/AR interfaces.
In this paper, we derive a practical, general framework for creating adaptive iterative (linearization or splitting) algorithms to solve multi-physics problems. This means that, given an iterative method, we derive \textit{a posteriori} estimators to predict the success or failure of the method. Based on these estimators, we propose adaptive algorithms, including adaptively switching between methods, adaptive time-stepping methods, and the adaptive tuning of stabilization parameters. We apply this framework to two-phase flow in porous media, surfactant transport in porous media, and quasi-static poroelasticity.
We find that correct-to-incorrect sycophancy signals are most linearly separable within multi-head attention activations. Motivated by the linear representation hypothesis, we train linear probes across the residual stream, multilayer perceptron (MLP), and attention layers to analyze where these signals emerge. Although separability appears in the residual stream and MLPs, steering using these probes is most effective in a sparse subset of middle-layer attention heads. Using TruthfulQA as the base dataset, we find that probes trained on it transfer effectively to other factual QA benchmarks. Furthermore, comparing our discovered direction to previously identified "truthful" directions reveals limited overlap, suggesting that factual accuracy, and deference resistance, arise from related but distinct mechanisms. Attention-pattern analysis further indicates that the influential heads attend disproportionately to expressions of user doubt, contributing to sycophantic shifts. Overall, these findings suggest that sycophancy can be mitigated through simple, targeted linear interventions that exploit the internal geometry of attention activations.
Recent advances in image editing leverage latent diffusion models (LDMs) for versatile, text-prompt-driven edits across diverse tasks. Yet, maintaining pixel-level edge structures-crucial for tasks such as photorealistic style transfer or image tone adjustment-remains as a challenge for latent-diffusion-based editing. To overcome this limitation, we propose a novel Structure Preservation Loss (SPL) that leverages local linear models to quantify structural differences between input and edited images. Our training-free approach integrates SPL directly into the diffusion model's generative process to ensure structural fidelity. This core mechanism is complemented by a post-processing step to mitigate LDM decoding distortions, a masking strategy for precise edit localization, and a color preservation loss to preserve hues in unedited areas. Experiments confirm SPL enhances structural fidelity, delivering state-of-the-art performance in latent-diffusion-based image editing. Our code will be publicly released at this https URL.
This work introduces a human-inspired reinforcement learning (RL) architecture that integrates Pavlovian and instrumental processes to enhance decision-making in autonomous systems. While existing engineering solutions rely almost exclusively on instrumental learning, neuroscience shows that humans use Pavlovian associations to leverage predictive cues to bias behavior before outcomes occur. We translate this dual-system mechanism into a cue-guided RL framework in which radio-frequency (RF) stimuli act as conditioned (Pavlovian) cues that modulate action selection. The proposed architecture combines Pavlovian values with instrumental policy optimization, improving navigation efficiency and cooperative behavior in unknown, partially observable environments. Simulation results demonstrate that cue-driven agents adapt faster, achieving superior performance compared to traditional instrumental-solo agents. This work highlights the potential of human learning principles to reshape digital agents intelligence.
Large language models can perform well on many isolated tasks, yet they continue to struggle on multi-turn, long-horizon agentic problems that require skills such as planning, state tracking, and long context processing. In this work, we aim to better understand the relative importance of advancing these underlying capabilities for success on such tasks. We develop an oracle counterfactual framework for multi-turn problems that asks: how would an agent perform if it could leverage an oracle to perfectly perform a specific task? The change in the agent's performance due to this oracle assistance allows us to measure the criticality of such oracle skill in the future advancement of AI agents. We introduce a suite of procedurally generated, game-like tasks with tunable complexity. These controlled environments allow us to provide precise oracle interventions, such as perfect planning or flawless state tracking, and make it possible to isolate the contribution of each oracle without confounding effects present in real-world benchmarks. Our results show that while some interventions (e.g., planning) consistently improve performance across settings, the usefulness of other skills is dependent on the properties of the environment and language model. Our work sheds light on the challenges of multi-turn agentic environments to guide the future efforts in the development of AI agents and language models.
Gradient-based methods for instance-based explanation for large language models (LLMs) are hindered by the immense dimensionality of model gradients. In practice, influence estimation is restricted to a subset of model parameters to make computation tractable, but this subset is often chosen ad hoc and rarely justified by systematic evaluation. This paper investigates if it is better to create low-dimensional representations by selecting a small, architecturally informed subset of model components or by projecting the full gradients into a lower-dimensional space. Using a novel benchmark, we show that a greedily selected subset of components captures the information about training data influence needed for a retrieval task more effectively than either the full gradient or random projection. We further find that this approach is more computationally efficient than random projection, demonstrating that targeted component selection is a practical strategy for making instance-based explanations of large models more computationally feasible.
We propose a reliable and energy-efficient framework for 3D brain tumor segmentation using spiking neural networks (SNNs). A multi-view ensemble of sagittal, coronal, and axial SNN models provides voxel-wise uncertainty estimation and enhances segmentation robustness. To address the high computational cost in training SNN models for semantic image segmentation, we employ Forward Propagation Through Time (FPTT), which maintains temporal learning efficiency with significantly reduced computational cost. Experiments on the Multimodal Brain Tumor Segmentation Challenges (BraTS 2017 and BraTS 2023) demonstrate competitive accuracy, well-calibrated uncertainty, and an 87% reduction in FLOPs, underscoring the potential of SNNs for reliable, low-power medical IoT and Point-of-Care systems.
Solving Stefan problems via neural networks is inherently challenged by the nonlinear coupling between the solutions and the free boundary, which results in a non-convex optimization problem. To address this, this work proposes an Operator Splitting Method (OSM) based on Extreme Learning Machines (ELM) to decouple the geometric interface evolution from the physical field reconstruction. Within a predictor-corrector framework, the method splits the coupled system into an alternating sequence of two linear and convex subproblems: solving the diffusion equation on fixed subdomains and updating the interface geometry based on the Stefan condition. A key contribution is the formulation of both steps as linear least-squares problems; this transforms the computational strategy from a non-convex gradient-based optimization into a stable fixed-point iteration composed of alternating convex solvers. From a theoretical perspective, the relaxed iterative operator is shown to be locally contractive, and its fixed points are consistent with stationary points of the coupled residual functional. Benchmarks across 1D to 3D domains demonstrate the stability and high accuracy of the method, confirming that the proposed framework provides a highly accurate and efficient numerical solution for free boundary problems.
People are increasingly turning to generative AI (e.g., ChatGPT, Gemini, Copilot) for emotional support and companionship. While trust is likely to play a central role in enabling these informal and unsupervised interactions, we still lack an understanding of how people develop and experience it in this context. Seeking to fill this gap, we recruited 24 frequent users of generative AI for emotional support and conducted a qualitative study consisting of diary entries about interactions, transcripts of chats with AI, and in-depth interviews. Our results suggest important novel drivers of trust in this context: familiarity emerging from personalisation, nuanced mental models of generative AI, and awareness of people's control over conversations. Notably, generative AI's homogeneous use of personalised, positive, and persuasive language appears to promote some of these trust-building factors. However, this also seems to discourage other trust-related behaviours, such as remembering that generative AI is a machine trained to converse in human language. We present implications for future research that are likely to become critical as the use of generative AI for emotional support increasingly overlaps with therapeutic work.
Mobile phones, as simultaneously personal and shared technologies, complicate how partners manage digital privacy in intimate relationships. While prior research has examined device-access practices, explicit privacy-rule negotiation, and toxic practices such as surveillance, little is known about how couples manage digital privacy without direct discussion in everyday relationships. To address this gap, we ask: How is digital privacy managed nonverbally and across different media on mobile phones? Drawing on 20 semi-structured interviews, we find that partners often regulate privacy practices through privacy silence -- the intentional avoidance of privacy-related conversations. We identify five motivations for leaving boundaries unspoken: perceiving privacy as unnecessary in intimacy, assuming implicit respect for boundaries, signaling trust and closeness, avoiding potential conflict or harm, and responding to broader societal and cultural expectations that discourage explicit privacy talk. We also identify a hierarchical grouping of content-specific privacy sensitivities, ranging from highly private domains such as financial data to lower-risk domains such as streaming accounts, and show how these priorities shift across relationship stages. These findings show how silence, culture, and content sensitivity shape everyday boundary-setting and underscore the relational and emotional dynamics underpinning mobile phone privacy management.
Counterfactual explanations (CEs) offer interpretable insights into machine learning predictions by answering ``what if?" questions. However, in real-world settings where models are frequently updated, existing counterfactual explanations can quickly become invalid or unreliable. In this paper, we introduce Probabilistically Safe CEs (PSCE), a method for generating counterfactual explanations that are $\delta$-safe, to ensure high predictive confidence, and $\epsilon$-robust to ensure low predictive variance. Based on Bayesian principles, PSCE provides formal probabilistic guarantees for CEs under model changes which are adhered to in what we refer to as the $\langle \delta, \epsilon \rangle$-set. Uncertainty-aware constraints are integrated into our optimization framework and we validate our method empirically across diverse datasets. We compare our approach against state-of-the-art Bayesian CE methods, where PSCE produces counterfactual explanations that are not only more plausible and discriminative, but also provably robust under model change.
The advent of large language models (LLMs) has ushered in a new era in automated code translation across programming languages. Since most code-specific LLMs are pretrained on well-commented code from large repositories like GitHub, it is reasonable to hypothesize that natural language code comments could aid in improving translation quality. Despite their potential relevance, comments are largely absent from existing code translation benchmarks, rendering their impact on translation quality inadequately characterised. In this paper, we present a large-scale empirical study evaluating the impact of comments on translation performance. Our analysis involves more than $80,000$ translations, with and without comments, of $1100+$ code samples from two distinct benchmarks covering pairwise translations between five different programming languages: C, C++, Go, Java, and Python. Our results provide strong evidence that code comments, particularly those that describe the overall purpose of the code rather than line-by-line functionality, significantly enhance translation accuracy. Based on these findings, we propose COMMENTRA, a code translation approach, and demonstrate that it can potentially double the performance of LLM-based code translation. To the best of our knowledge, our study is the first in terms of its comprehensiveness, scale, and language coverage on how to improve code translation accuracy using code comments.
Buildings generate heterogeneous data across their lifecycle, yet integrating these data remains a critical unsolved challenge. Despite three decades of standardization efforts, over 40 metadata schemas now span the building lifecycle, with fragmentation accelerating rather than resolving. Current approaches rely on point-to-point mappings that scale quadratically with the number of schemas, or universal ontologies that become unwieldy monoliths. The fundamental gap is the absence of mathematical foundations for structure-preserving transformations across heterogeneous building data. Here we show that category theory provides these foundations, enabling systematic data integration with $O(n)$ specification complexity for $n$ ontologies. We formalize building ontologies as first-order theories and demonstrate two proof-of-concept implementations in Categorical Query Language (CQL): 1) generating BRICK models from IFC design data at commissioning, and 2) three-way integration of IFC, BRICK, and RealEstateCore where only two explicit mappings yield the third automatically through categorical composition. Our correct-by-construction approach treats property sets as first-class schema entities and provides automated bidirectional migrations, and enables cross-ontology queries. These results establish feasibility of categorical methods for building data integration and suggest a path toward an app ecosystem for buildings, where mathematical foundations enable reliable component integration analogous to smartphone platforms.
Vision-Language-Action (VLA) models have advanced robotic manipulation by combining vision, language, and proprioception to predict actions. However, previous methods fuse proprioceptive signals directly with VLM-encoded vision-language features, resulting in state-dominant bias and false completions despite visible execution failures. We attribute this to modality imbalance, where policies over-rely on internal state while underusing visual evidence. To address this, we present ReViP, a novel VLA framework with Vision-Proprioception Rebalance to enhance visual grounding and robustness under perturbations. The key insight is to introduce auxiliary task-aware environment priors to adaptively modulate the coupling between semantic perception and proprioceptive dynamics. Specifically, we use an external VLM as a task-stage observer to extract real-time task-centric visual cues from visual observations, which drive a Vision-Proprioception Feature-wise Linear Modulation to enhance environmental awareness and reduce state-driven errors. Moreover, to evaluate false completion, we propose the first False-Completion Benchmark Suite built on LIBERO with controlled settings such as Object-Drop. Extensive experiments show that ReViP effectively reduces false-completion rates and improves success rates over strong VLA baselines on our suite, with gains extending to LIBERO, RoboTwin 2.0, and real-world evaluations.
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: this https URL.
The United Nations' 2030 Agenda for Sustainable Development highlights the importance of energy-efficient software to reduce the global carbon footprint. Programming languages and execution models strongly influence software energy consumption, with interpreted languages generally being less efficient than compiled ones. Lua illustrates this trade-off: despite its popularity, it is less energy-efficient than greener and faster languages such as C. This paper presents an empirical study of Lua's runtime performance and energy efficiency across 25 official interpreter versions and just-in-time (JIT) compilers. Using a comprehensive benchmark suite, we measure execution time and energy consumption to analyze Lua's evolution, the impact of JIT compilation, and comparisons with other languages. Results show that all LuaJIT compilers significantly outperform standard Lua interpreters. The most efficient LuaJIT consumes about seven times less energy and runs seven times faster than the best Lua interpreter. Moreover, LuaJIT approaches C's efficiency, using roughly six times more energy and running about eight times slower, demonstrating the substantial benefits of JIT compilation for improving both performance and energy efficiency in interpreted languages.
High-quality 3D garment reconstruction plays a crucial role in mitigating the sim-to-real gap in applications such as digital avatars, virtual try-on and robotic manipulation. However, existing garment reconstruction methods typically rely on unstructured representations, such as 3D Gaussian Splats, struggling to provide accurate reconstructions of garment topology and sewing structures. As a result, the reconstructed outputs are often unsuitable for high-fidelity physical simulation. We propose ReWeaver, a novel framework for topology-accurate 3D garment and sewing pattern reconstruction from sparse multi-view RGB images. Given as few as four input views, ReWeaver predicts seams and panels as well as their connectivities in both the 2D UV space and the 3D space. The predicted seams and panels align precisely with the multi-view images, yielding structured 2D--3D garment representations suitable for 3D perception, high-fidelity physical simulation, and robotic manipulation. To enable effective training, we construct a large-scale dataset GCD-TS, comprising multi-view RGB images, 3D garment geometries, textured human body meshes and annotated sewing patterns. The dataset contains over 100,000 synthetic samples covering a wide range of complex geometries and topologies. Extensive experiments show that ReWeaver consistently outperforms existing methods in terms of topology accuracy, geometry alignment and seam-panel consistency.
It is well-known that audio classifiers often rely on non-musically relevant features and spurious correlations to classify audio. Hence audio classifiers are easy to manipulate or confuse, resulting in wrong classifications. While inducing a misclassification is not hard, until now the set of features that the classifiers rely on was not well understood. In this paper we introduce a new method that uses causal reasoning to discover features of the frequency space that are sufficient and necessary for a given classification. We describe an implementation of this algorithm in the tool FreqReX and provide experimental results on a number of standard benchmark datasets. Our experiments show that causally sufficient and necessary subsets allow us to manipulate the outputs of the models in a variety of ways by changing the input very slightly. Namely, a change to one out of 240,000 frequencies results in a change in classification 58% of the time, and the change can be so small that it is practically inaudible. These results show that causal analysis is useful for understanding the reasoning process of audio classifiers and can be used to successfully manipulate their outputs.
We propose an algorithm that approximates a given matrix polynomial of degree $d$ by another skew-symmetric matrix polynomial of a specified rank and degree at most $d$. The algorithm is built on recent advances in the theory of generic eigenstructures and factorizations for skew-symmetric matrix polynomials of bounded rank and degree. Taking into account that the rank of a skew-symmetric matrix polynomial is even, the algorithm works for any prescribed even rank greater than or equal to $2$ and produces a skew-symmetric matrix polynomial of that exact rank. We also adapt the algorithm for matrix pencils to achieve a better performance. Lastly, we present numerical experiments for testing our algorithms and for comparison to the previously known ones.
The sample efficiency challenge in Deep Reinforcement Learning (DRL) compromises its industrial adoption due to the high cost and time demands of real-world training. Virtual environments offer a cost-effective alternative for training DRL agents, but the transfer of learned policies to real setups is hindered by the sim-to-real gap. Achieving zero-shot transfer, where agents perform directly in real environments without additional tuning, is particularly desirable for its efficiency and practical value. This work proposes a novel domain adaptation approach relying on a Style-Identified Cycle Consistent Generative Adversarial Network (StyleID-CycleGAN or SICGAN), an original Cycle Consistent Generative Adversarial Network (CycleGAN) based model. SICGAN translates raw virtual observations into real-synthetic images, creating a hybrid domain for training DRL agents that combines virtual dynamics with real-like visual inputs. Following virtual training, the agent can be directly deployed, bypassing the need for real-world training. The pipeline is validated with two distinct industrial robots in the approaching phase of a pick-and-place operation. In virtual environments agents achieve success rates of 90 to 100\%, and real-world deployment confirms robust zero-shot transfer (i.e., without additional training in the physical environment) with accuracies above 95\% for most workspace regions. We use augmented reality targets to improve the evaluation process efficiency, and experimentally demonstrate that the agent successfully generalizes to real objects of varying colors and shapes, including LEGO\textsuperscript{\textregistered}~cubes and a mug. These results establish the proposed pipeline as an efficient, scalable solution to the sim-to-real problem.
A source encoder is stable if a small change in the source sequence (e.g., changing a few symbols) results in a small (or bounded) change in the output codeword. By this definition, the common technique of random binning is unstable; because the mapping is random, two nearly identical source sequences can be assigned to completely unrelated bin indices. We study compression rates of stable lossless source codes. Using combinatorial arguments, we derive information-theoretic limits on the achievable rate as a function of the stability parameters.
Blockchain systems are increasingly targeted by on-chain attacks that exploit contract vulnerabilities to extract value rapidly and stealthily, making systematic analysis and reproduction highly challenging. In practice, reproducing such attacks requires manually crafting proofs-of-concept (PoCs), a labor-intensive process that demands substantial expertise and scales poorly. In this work, we present the first automated framework for synthesizing verifiable PoCs directly from on-chain attack executions. Our key insight is that attacker logic can be recovered from low-level transaction traces via trace-driven reverse engineering, and then translated into executable exploits by leveraging the code-generation capabilities of large language models (LLMs). To this end, we propose TracExp, which localizes attack-relevant execution contexts from noisy, multi-contract traces and introduces a novel dual-decompiler to transform concrete executions into semantically enriched exploit pseudocode. Guided by this representation, TracExp synthesizes PoCs and refines them to preserve exploitability-relevant semantics. We evaluate TracExp on 321 real-world attacks over the past 20 months. TracExp successfully synthesizes PoCs for 93% of incidents, with 58.78% being directly verifiable, at an average cost of only \$0.07 per case. Moreover, TracExp enabled the release of a large number of previously unavailable PoCs to the community, earning a $900 bounty and demonstrating strong practical impact.
Representing a control system as a Service-Oriented Architecture (SOA)-referred to as Service-Oriented Model-Based Control (SOMC)-enables runtime-flexible composition of control loop elements. This paper presents a framework that optimizes the computation-accuracy trade-off by formulating service orchestration as an A$^\star$search problem, complemented by Contextual Bayesian Optimization (BO) to tune the multi-objective cost weights. A vehicle longitudinal-velocity control case study demonstrates online, performancedriven reconfiguration of the control architecture. We show that our framework not only combines control and software structure but also considers the real-time requirements of the control system during performance optimization.
Evaluating the clinical correctness and reasoning fidelity of automatically generated medical imaging reports remains a critical yet unresolved challenge. Existing evaluation methods often fail to capture the structured diagnostic logic that underlies radiological interpretation, resulting in unreliable judgments and limited clinical relevance. We introduce AgentsEval, a multi-agent stream reasoning framework that emulates the collaborative diagnostic workflow of radiologists. By dividing the evaluation process into interpretable steps including criteria definition, evidence extraction, alignment, and consistency scoring, AgentsEval provides explicit reasoning traces and structured clinical feedback. We also construct a multi-domain perturbation-based benchmark covering five medical report datasets with diverse imaging modalities and controlled semantic variations. Experimental results demonstrate that AgentsEval delivers clinically aligned, semantically faithful, and interpretable evaluations that remain robust under paraphrastic, semantic, and stylistic perturbations. This framework represents a step toward transparent and clinically grounded assessment of medical report generation systems, fostering trustworthy integration of large language models into clinical practice.
This paper addresses the challenge of human-guided navigation for mobile collaborative robots under simultaneous proximity regulation and safety constraints. We introduce Adaptive Reinforcement and Model Predictive Control Switching (ARMS), a hybrid learning-control framework that integrates a reinforcement learning follower trained with Proximal Policy Optimization (PPO) and an analytical one-step Model Predictive Control (MPC) formulated as a quadratic program safety filter. To enable robust perception under partial observability and non-stationary human motion, ARMS employs a decoupled sensing architecture with a Long Short-Term Memory (LSTM) temporal encoder for the human-robot relative state and a spatial encoder for 360-degree LiDAR scans. The core contribution is a learned adaptive neural switcher that performs context-aware soft action fusion between the two controllers, favoring conservative, constraint-aware QP-based control in low-risk regions while progressively shifting control authority to the learned follower in highly cluttered or constrained scenarios where maneuverability is critical, and reverting to the follower action when the QP becomes infeasible. Extensive evaluations against Pure Pursuit, Dynamic Window Approach (DWA), and an RL-only baseline demonstrate that ARMS achieves an 82.5 percent success rate in highly cluttered environments, outperforming DWA and RL-only approaches by 7.1 percent and 3.1 percent, respectively, while reducing average computational latency by 33 percent to 5.2 milliseconds compared to a multi-step MPC baseline. Additional simulation transfer in Gazebo and initial real-world deployment results further indicate the practicality and robustness of ARMS for safe and efficient human-robot collaboration. Source code and a demonstration video are available at this https URL.
We introduce EMemBench, a programmatic benchmark for evaluating long-term memory of agents through interactive games. Rather than using a fixed set of questions, EMemBench generates questions from each agent's own trajectory, covering both text and visual game environments. Each template computes verifiable ground truth from underlying game signals, with controlled answerability and balanced coverage over memory skills: single/multi-hop recall, induction, temporal, spatial, logical, and adversarial. We evaluate memory agents with strong LMs/VLMs as backbones, using in-context prompting as baselines. Across 15 text games and multiple visual seeds, results are far from saturated: induction and spatial reasoning are persistent bottlenecks, especially in visual setting. Persistent memory yields clear gains for open backbones on text games, but improvements are less consistent for VLM agents, suggesting that visually grounded episodic memory remains an open challenge. A human study further confirms the difficulty of EMemBench.
Orb-weaving spiders detect prey on a web using vibration sensors at leg joints. They often dynamically crouch their legs during prey sensing, likely an active sensing strategy. However, how leg crouching enhances sensing is poorly understood, because measuring system vibrations in behaving animals is difficult. We use robophysical modeling to study this problem. Our previous spider robot had only four legs, simplified leg morphology, and a shallow crouching range of motion. Here, we developed a new spider robot, with eight legs, each with four joints that better approximated spider leg morphology. Leg exoskeletons were 3-D printed and joint stiffness was tuned using integrated silicone molding with variable materials and geometry. Tendon-driven actuation allowed a motor in the body to crouch all eight legs deeply as spiders do, while accelerometers at leg joints record leg vibrations. Experiments showed that our new spider robot reproduced key vibration features observed in the previous robot while improving biological accuracy. Our new robot provides a biologically more accurate robophysical model for studying how leg behaviors modulate vibration sensing on a web.
In skeleton-based human activity understanding, existing methods often adopt the contrastive learning paradigm to construct a discriminative feature space. However, many of these approaches fail to exploit the structural inter-class similarities and overlook the impact of anomalous positive samples. In this study, we introduce ACLNet, an Affinity Contrastive Learning Network that explores the intricate clustering relationships among human activity classes to improve feature discrimination. Specifically, we propose an affinity metric to refine similarity measurements, thereby forming activity superclasses that provide more informative contrastive signals. A dynamic temperature schedule is also introduced to adaptively adjust the penalty strength for various superclasses. In addition, we employ a margin-based contrastive strategy to improve the separation of hard positive and negative samples within classes. Extensive experiments on NTU RGB+D 60, NTU RGB+D 120, Kinetics-Skeleton, PKU-MMD, FineGYM, and CASIA-B demonstrate the superiority of our method in skeleton-based action recognition, gait recognition, and person re-identification. The source code is available at this https URL.
Polynomial-time quantum Turing machines are provably superior to their classical counterparts within a common space bound in $o(\log \log n)$. For $\Omega(\log \log n)$ space, the only known quantum advantage result has been the fact $\mathsf{BPTISP}(2^{O(n)},o(\log n))\subsetneq \mathsf{BQTISP}(2^{O(n)},o(\log n))$, proven by exhibiting an exponential-time quantum finite automaton (2QCFA) that recognizes $L_{pal}$, the language of palindromes, which is an impossible task for sublogarithmic-space probabilistic Turing machines. No subexponential-time quantum algorithm can recognize $L_{pal}$ in sublogarithmic space. We initiate the study of quantum advantage under simultaneous subexponential time and $\Omega(\log \log n) \cap o(\log n)$ space bounds. We exhibit an infinite family $\mathcal{F}$ of functions in $(\log n)^{\omega(1)}\cap n^{o(1)}$ such that for every $f_i\in\mathcal{F}$, there exists another function $f_{i+1}\in\mathcal{F}$ such that $f_{i+1}(n) \in o(f_{i}(n))$, and each such $f_i$ corresponds to a different quantum advantage statement, i.e. a proper inclusion of the form $\mathsf{BPTISP}(2^{O(f_i(n))},o(\log f_i(n)))\subsetneq \mathsf{BQTISP}(2^{O(f_i(n))},o(\log f_i(n)))$ for a different pair of subexponential time and sublogarithmic space bounds. Our results depend on a technique enabling polynomial-time quantum finite automata to control padding functions with very fine asymptotic granularity.
Stakeholders often struggle to accurately express their requirements due to articulation barriers arising from limited domain knowledge or from cognitive constraints. This can cause misalignment between expressed and intended requirements, complicating elicitation and validation. Traditional elicitation techniques, such as interviews and follow-up sessions, are time-consuming and risk distorting stakeholders' original intent across iterations. Large Language Models (LLMs) can infer user intentions from context, suggesting potential for assisting stakeholders in expressing their needs. This raises the questions of (i) how effectively LLMs can support requirement expression and (ii) whether such support benefits stakeholders with limited domain expertise. We conducted a study with 26 participants who produced 130 requirement statements. Each participant first expressed requirements unaided, then evaluated LLM-generated revisions tailored to their context. Participants rated LLM revisions significantly higher than their original statements across all dimensions-alignment with intent, readability, reasoning, and unambiguity. Qualitative feedback further showed that LLM revisions often surfaced tacit details stakeholders considered important and helped them better understand their own requirements. We present and evaluate a stakeholder-centered approach that leverages LLMs as articulation aids in requirements elicitation and validation. Our results show that LLM-assisted reformulation improves perceived completeness, clarity, and alignment of requirements. By keeping stakeholders in the validation loop, this approach promotes responsible and trustworthy use of AI in Requirements Engineering.
Generative artificial intelligence (GenAI) tools have seen rapid adoption among software developers. While adoption rates in the industry are rising, the underlying factors influencing the effective use of these tools, including the depth of interaction, organizational constraints, and experience-related considerations, have not been thoroughly investigated. This issue is particularly relevant in environments with stringent regulatory requirements, such as Germany, where practitioners must address the GDPR and the EU AI Act while balancing productivity gains with intellectual property considerations. Despite the significant impact of GenAI on software engineering, to the best of our knowledge, no empirical study has systematically examined the adoption dynamics of GenAI tools within the German context. To address this gap, we present a comprehensive mixed-methods study on GenAI adoption among German software engineers. Specifically, we conducted 18 exploratory interviews with practitioners, followed by a developer survey with 109 participants. We analyze patterns of tool adoption, prompting strategies, and organizational factors that influence effectiveness. Our results indicate that experience level moderates the perceived benefits of GenAI tools, and productivity gains are not evenly distributed among developers. Further, organizational size affects both tool selection and the intensity of tool use. Limited awareness of the project context is identified as the most significant barrier. We summarize a set of actionable implications for developers, organizations, and tool vendors seeking to advance artificial intelligence (AI) assisted software development.
REST is today's most widely used architectural style for providing web-based services. In the age of service-orientation (a.k.a. Software as a Service (SaaS)) APIs have become core business assets and can easily expose hundreds of operations. While well-designed APIs contribute to the commercial success of a service, poorly designed APIs can threaten entire organizations. Recognizing their relevance and value, many guidelines have been proposed for designing usable APIs, similar to design patterns and coding standards. For example, Zalando and Microsoft provide popular REST API guidelines. However, they are often considered as too large and inapplicable, so many companies create and maintain their own guidelines, which is a challenge in itself. In practice, however, developers still struggle to design effective REST APIs. To improve the situation, we need to improve our empirical understanding of adopting, using, and creating REST API guidelines. We present an interview study with 16 REST API experts from industry. We determine the notion of API usability, guideline effectiveness factors, challenges of adopting and designing guidelines, and best practices. We identified eight factors influencing REST API usability, among which the adherence to conventions is the most important one. While guidelines can in fact be an effective means to improve API usability, there is significant resistance from developers against strict guidelines. Guideline size and how it fits with organizational needs are two important factors to consider. REST guidelines also have to grow with the organization, while all stakeholders need to be involved in their development and maintenance. Automated linting provides an opportunity to not only embed compliance enforcement into processes, but also to justify guideline rules with educational explanations.
We explore the potential of visualization to support musicians in instrument practice through real-time feedback and reflection on their playing. Musicians often struggle to observe the patterns in their playing and interpret them with respect to their goals. Our premise is that these patterns can be made visible with interactive visualization: we can make the unhearable visible. However, understanding the design of such visualizations is challenging: the diversity of needs, including different instruments, skills, musical attributes, and genres, means that any single use case is unlikely to illustrate the broad potential and opportunities. To address this challenge, we conducted a design exploration study where we created and iterated on 33 designs, each focusing on a subset of needs, for example, only one musical skill. Our designs are grounded in our own experience as musicians and the ideas and feedback of 18 musicians with various musical backgrounds and we evaluated them with 13 music learners and teachers. This paper presents the results of our exploration, focusing on a few example designs as instances of possible instrument practice visualizations. From our work, we draw design considerations that contribute to future research and products for visual instrument education.
This work presents the numerical analysis of a barotropic-baroclinic splitting in a nonlinear multilayer framework with exchanges between the layers in terrain-following coordinates. The splitting is formulated as an exact operator splitting. The barotropic step handles free surface evolution and depth-averaged velocity via a well-balanced one-layer model, while the baroclinic step manages vertical exchanges between layers and adjusts velocities to their mean values. We show that the barotropic-baroclinic splitting preserves total energy conservation and meets both a discrete maximum principle and a discrete entropy inequality. Several numerical experiments are presented showing the gain in computational cost, particularly in low Froude simulations, with no loss of accuracy. The benefits of using a well-balancing strategy in the barotropic step to preserve the geostrophic equilibrium are inherited in the overall scheme.
Generalization to unseen concepts is a central challenge due to the scarcity of human annotations in Mention-agnostic Biomedical Concept Recognition (MA-BCR). This work makes two key contributions to systematically address this issue. First, we propose an evaluation framework built on hierarchical concept indices and novel metrics to measure generalization. Second, we explore LLM-based Auto-Labeled Data (ALD) as a scalable resource, creating a task-specific pipeline for its generation. Our research unequivocally shows that while LLM-generated ALD cannot fully substitute for manual annotations, it is a valuable resource for improving generalization, successfully providing models with the broader coverage and structural knowledge needed to approach recognizing unseen concepts. Code and datasets are available at this https URL.
Robot-assisted rehabilitation offers an effective approach, wherein exoskeletons adapt to users' needs and provide personalized assistance. However, to deliver such assistance, accurate prediction of the user's joint torques is essential. In this work, we propose a feature extraction pipeline using 8-channel surface electromyography (sEMG) signals to predict elbow and shoulder joint torques. For preliminary evaluation, this pipeline was integrated into two neural network models: the Multilayer Perceptron (MLP) and the Temporal Convolutional Network (TCN). Data were collected from a single subject performing elbow and shoulder movements under three load conditions (0 kg, 1.10 kg, and 1.85 kg) using three motion-capture cameras. Reference torques were estimated from center-of-mass kinematics under the assumption of static equilibrium. Our offline analyses showed that, with our feature extraction pipeline, MLP model achieved mean RMSE of 0.963 N m, 1.403 N m, and 1.434 N m (over five seeds) for elbow, front-shoulder, and side-shoulder joints, respectively, which were comparable to the TCN performance. These results demonstrate that the proposed feature extraction pipeline enables a simple MLP to achieve performance comparable to that of a network designed explicitly for temporal dependencies. This finding is particularly relevant for applications with limited training data, a common scenario patient care.
Handwritten text recognition (HTR) for Arabic-script languages still lags behind Latin-script HTR, despite recent advances in model architectures, datasets, and benchmarks. We show that data quality is a significant limiting factor in many published datasets and propose CER-HV (CER-based Ranking with Human Verification) as a framework to detect and clean label errors. CER-HV combines a CER-based noise detector, built on a carefully configured Convolutional Recurrent Neural Network (CRNN) with early stopping to avoid overfitting noisy samples, and a human-in-the-loop (HITL) step that verifies high-ranking samples. The framework reveals that several existing datasets contain previously underreported problems, including transcription, segmentation, orientation, and non-text content errors. These have been identified with up to 90 percent precision in the Muharaf and 80-86 percent in the PHTI datasets. We also show that our CRNN achieves state-of-the-art performance across five of the six evaluated datasets, reaching 8.45 percent Character Error Rate (CER) on KHATT (Arabic), 8.26 percent on PHTI (Pashto), 10.66 percent on Ajami, and 10.11 percent on Muharaf (Arabic), all without any data cleaning. We establish a new baseline of 11.3 percent CER on the PHTD (Persian) dataset. Applying CER-HV improves the evaluation CER by 0.3-0.6 percent on the cleaner datasets and 1.0-1.8 percent on the noisier ones. Although our experiments focus on documents written in an Arabic-script language, including Arabic, Persian, Urdu, Ajami, and Pashto, the framework is general and can be applied to other text recognition datasets.
Understanding causal relationships is critical for healthcare. Accurate causal models provide a means to enhance the interpretability of predictive models, and furthermore a basis for counterfactual and interventional reasoning and the estimation of treatment effects. However, would-be practitioners of causal discovery face a dizzying array of algorithms without a clear best choice. This abundance of competitive algorithms makes ensembling a natural choice for practical applications. At the same time, real-world use cases frequently face challenges that violate the assumptions of common causal discovery algorithms, forcing heavy reliance on expert knowledge. Inspired by recent work on dynamically requested expert knowledge and LLMs as experts, we present a flexible model averaging method leveraging dynamically requested expert knowledge to ensemble a diverse array of causal discovery algorithms. Experiments demonstrate the efficacy of our method with imperfect experts such as LLMs on both clean and noisy data. We also analyze the impact of different degrees of expert correctness and assess the capabilities of LLMs for clinical causal discovery, providing valuable insights for practitioners.
In this paper, we propose a two-layer adoption-opinion model to study the diffusion of two competing technologies within a population whose opinions evolve under social influence and adoption-driven feedback. After adopting one technology, individuals may become dissatisfied and switch to the alternative. We prove the existence and uniqueness of the adoption-diffused equilibrium, showing that both technologies coexist and that neither partial-adoption nor monopoly can arise. Numerical simulations show that while opinions shape the equilibrium adoption levels, the relative market share between the two technologies depends solely on their user-experience. As a consequence, interventions that symmetrically boost opinions or adoption can disproportionately favor the higher-quality technology, illustrating how symmetric control actions may generate asymmetric outcomes.
People increasingly turn to conversational agents such as ChatGPT to seek guidance for their personal problems. As these systems grow in capability, many now display elements of "thinking": short reflective statements that reveal a model's intentions or values before responding. While initially introduced to promote transparency, such visible thinking can also anthropomorphise the agent and shape user expectations. Yet little is known about how these displays affect user perceptions in help-seeking contexts. We conducted a 3 x 2 mixed design experiment examining the impact of 'Thinking Content' (None, Emotionally-Supportive, Expertise-Supportive) and 'Conversation Context' (Habit-related vs. Feelings-related problems) on users' perceptions of empathy, warmth, competence, and engagement. Participants interacted with a chatbot that either showed no visible thinking or presented value-oriented reflections prior to its response. Our findings contribute to understanding how thinking transparency influences user experience in supportive dialogues, and offer implications for designing conversational agents that communicate intentions in sensitive, help-seeking scenarios.
This paper investigates an optimal control problem for an adoption-opinion model that couples opinion dynamics with a compartmental adoption framework on a multilayer network to study the diffusion of sustainable behaviors. Adoption evolves through social contagion and perceived benefits, while opinions are shaped by social interactions and feedback from adoption levels. Individuals may also stop adopting virtuous behavior due to external constraints or shifting perceptions, affecting overall diffusion. After the stability analysis of equilibria, both in the presence and absence of adopters, we introduce a Model Predictive Control (MPC) framework that optimizes interventions by shaping opinions rather than directly enforcing adoption. This nudge-based control strategy allows policymakers to influence diffusion indirectly, making interventions more effective and scalable. Numerical simulations demonstrate that, in the absence of control, adoption stagnates, whereas MPC-driven interventions sustain and enhance adoption across communities.
How much influence can a coordinated coalition exert in a multiwinner Top-$k$ election under a positional scoring rule? We study the maximum displacement problem: with coalition size $m$, how many of the current top-$k$ winners can be forced out? We show coalition power decomposes into two independent prefix-majorization constraints, capturing how much the coalition can (i) boost outsiders and (ii) suppress weak winners. For arbitrary scoring rules these prefix inequalities are tight, efficiently checkable necessary conditions (exact in the continuous relaxation). For common-step arithmetic-progression (AP) score ladders, including Borda, truncated Borda, $k$-approval/$k$-veto, plurality, and multi-level rules such as $3$--$2$--$1$, we prove a Majorization--Lattice Theorem: feasible aggregate score vectors are exactly the integer points satisfying the Block--HLP prefix-sum capacity constraints plus a single global congruence condition modulo the step size $g$. For Borda ($g=1$) the congruence vanishes, yielding a pure prefix-majorization test. This characterization yields an $O(k'\log k')$ exact feasibility oracle for displacing $k'$ winners, and an $O(k(\log k)^2\log(mx))$ algorithm (via dual-envelope binary search) for computing the maximum achievable displacement $k^\ast$. Experiments on Mallows profiles and PrefLib elections confirm exact cutoffs, diminishing returns, and substantial gains over baseline heuristics; for $g>1$ they also demonstrate the predicted congruence effect, where prefix-only tests produce false positives. The oracle scales to extreme instances, processing $10^9$ candidates in under 28 seconds (memory permitting).
As Automated Essay Scoring (AES) systems are increasingly used in high-stakes educational settings, concerns regarding algorithmic bias against English as a Second Language (ESL) learners have increased. Current Transformer-based regression models trained primarily on native-speaker corpora often learn spurious correlations between surface-level L2 linguistic features and essay quality. In this study, we conduct a bias study of a fine-tuned DeBERTa-v3 model using the ASAP 2.0 and ELLIPSE datasets, revealing a constrained score scaling for high-proficiency ESL writing where high-proficiency ESL essays receive scores 10.3% lower than Native speaker essays of identical human-rated quality. To mitigate this, we propose applying contrastive learning with a triplet construction strategy: Contrastive Learning with Matched Essay Pairs. We constructed a dataset of 17,161 matched essay pairs and fine-tuned the model using Triplet Margin Loss to align the latent representations of ESL and Native writing. Our approach reduced the high-proficiency scoring disparity by 39.9% (to a 6.2% gap) while maintaining a Quadratic Weighted Kappa (QWK) of 0.76. Post-hoc linguistic analysis suggests the model successfully disentangled sentence complexity from grammatical error, preventing the penalization of valid L2 syntactic structures.
We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
This work presents a Discrete de Rham (DDR) numerical scheme for solving linear elasticity problems on general polyhedral meshes, with a focus on preventing volumetric locking in the quasi-incompressible regime. The method is formulated as a nodal-based approach using the lowest-order gradient space of the DDR complex, enriched with scalar face bubble degrees of freedom that effectively capture the normal flux across element faces. This face-bubble enrichment is crucial for ensuring sufficient approximation flexibility of the divergence field, thereby eliminating the {volumetric locking} phenomenon that typically occurs as the Lamé parameter $\lambda$ approaches infinity. We establish $H^1$-error estimates that are independent of $\lambda\ge 0$, and depend only on the lower bound of $\mu$, guaranteeing robustness across the entire range from compressible to nearly incompressible regimes. We also show how to adapt our scheme to the frictionless contact mechanics model, maintaining a locking-free estimate for the primal variable (displacement). Numerical experiments confirm that the proposed {locking-free} method delivers accurate and stable approximations on general polytopal discretizations, even when the material behaves as an incompressible medium. The flexibility and robustness of this approach make it a practical alternative to mixed formulations for engineering applications involving nearly incompressible elastic materials.
Circular Synthetic Aperture Sonar (CSAS) provides a 360° azimuth view of the seabed, surpassing the limited aperture and mono-view image of conventional side-scan SAS. This makes CSAS a valuable tool for target recognition in mine warfare where the diversity of point of view is essential for reducing false alarms. CSAS processing typically produces a very high-resolution two-dimensional image. However, the parallax introduced by the circular displacement of the illuminator fill-in the shadow regions, and the shadow cast by an object on the seafloor is lost in favor of azimuth coverage and resolution. Yet the shadows provide complementary information on target shape useful for target recognition. In this paper, we explore a way to retrieve shadow information from CSAS data to improve target analysis and carry 3D reconstruction. Sub-aperture filtering is used to get a collection of images at various points of view along the circular trajectory and fixed focus shadow enhancement (FFSE) is applied to obtain sharp shadows. An interactive interface is also proposed to allow human operators to visualize these shadows along the circular trajectory. A space-carving reconstruction method is applied to infer the 3D shape of the object from the segmented shadows. The results demonstrate the potential of shadows in circular SAS for improving target analysis and 3D reconstruction.
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time novel view synthesis. As an explicit representation optimized through gradient propagation among primitives, optimization widely accepted in deep neural networks (DNNs) is actually adopted in 3DGS, such as synchronous weight updating and Adam with the adaptive gradient. However, considering the physical significance and specific design in 3DGS, there are two overlooked details in the optimization of 3DGS: (i) update step coupling, which induces optimizer state rescaling and costly attribute updates outside the viewpoints, and (ii) gradient coupling in the moment, which may lead to under- or over-effective regularization. Nevertheless, such a complex coupling is under-explored. After revisiting the optimization of 3DGS, we take a step to decouple it and recompose the process into: Sparse Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking a large number of experiments under the 3DGS and 3DGS-MCMC frameworks, our work provides a deeper understanding of these components. Finally, based on the empirical analysis, we re-design the optimization and propose AdamW-GS by re-coupling the beneficial components, under which better optimization efficiency and representation effectiveness are achieved simultaneously.
Highway networks are crucial for economic prosperity. Climate change-induced temperature fluctuations are exacerbating stress on road pavements, resulting in elevated maintenance costs. This underscores the need for targeted and efficient maintenance strategies. This study investigates the potential of open-source data to guide highway infrastructure maintenance. The proposed framework integrates airborne imagery and OpenStreetMap (OSM) to fine-tune YOLOv11 for highway crack localization. To demonstrate the framework's real-world applicability, a Swiss Relative Highway Crack Density (RHCD) index was calculated to inform nationwide highway maintenance. The crack classification model achieved an F1-score of $0.84$ for the positive class (crack) and $0.97$ for the negative class (no crack). The Swiss RHCD index exhibited weak correlations with Long-term Land Surface Temperature Amplitudes (LT-LST-A) (Pearson's $r\ = -0.05$) and Traffic Volume (TV) (Pearson's $r\ = 0.17$), underlining the added value of this novel index for guiding maintenance over other data. Significantly high RHCD values were observed near urban centers and intersections, providing contextual validation for the predictions. These findings highlight the value of open-source data sharing to drive innovation, ultimately enabling more efficient solutions in the public sector.
Generative AI (GenAI) systems are inherently non-deterministic, producing varied outputs even for identical inputs. While this variability is central to their appeal, it challenges established HCI evaluation practices that typically assume consistent and predictable system behavior. Designing controlled lab studies under such conditions therefore remains a key methodological challenge. We present a reflective multi-case analysis of four lab-based user studies with GenAI-integrated prototypes, spanning conversational in-car assistant systems and image generation tools for design workflows. Through cross-case reflection and thematic analysis across all study phases, we identify five methodological challenges and propose eighteen practice-oriented recommendations, organized into five guidelines. These challenges represent methodological constructs that are either amplified, redefined, or newly introduced by GenAI's stochastic nature: (C1) reliance on familiar interaction patterns, (C2) fidelity-control trade-offs, (C3) feedback and trust, (C4) gaps in usability evaluation, and (C5) interpretive ambiguity between interface and system issues. Our guidelines address these challenges through strategies such as reframing onboarding to help participants manage unpredictability, extending evaluation with constructs such as trust and intent alignment, and logging system events, including hallucinations and latency, to support transparent analysis. This work contributes (1) a methodological reflection on how GenAI's stochastic nature unsettles lab-based HCI evaluation and (2) eighteen recommendations that help researchers design more transparent, robust, and comparable studies of GenAI systems in controlled settings.
In this paper, we present a new SDC scheme for solving semi-explicit DAEs with the ability to be parallelized in which only the differential equations are numerically integrated is presented. In Shu et al. (2007) it was shown that SDC for ODEs achieves one order per iteration. We show that this carries over to the new SDC scheme. The method is derived from the approach of spectral deferred corrections and the idea of enforcing the algebraic constraints without numerical integration as in the approach of $\varepsilon$-embedding in Hairer and Wanner (1996). It enforces the algebraic constraints to be satisfied in each iteration and allows an efficient solve of semi-explicit DAEs with high-accuracy. The proposed scheme is compared with other DAE methods. We demonstrate that the proposed SDC scheme is competitive with Runge-Kutta methods for DAEs in terms of accuracy and its parallelized versions are very efficient in comparison to other SDC methods.
LLM agents have demonstrated remarkable capabilities in software development, but their performance is hampered by long interaction contexts, which incur high API costs and latency. While various context compression approaches such as LongLLMLingua have emerged to tackle this challenge, they typically rely on fixed metrics such as PPL, ignoring the task-specific nature of code understanding. As a result, they frequently disrupt syntactic and logical structure and fail to retain critical implementation details. In this paper, we propose SWE-Pruner, a self-adaptive context pruning framework tailored for coding agents. Drawing inspiration from how human programmers "selectively skim" source code during development and debugging, SWE-Pruner performs task-aware adaptive pruning for long contexts. Given the current task, the agent formulates an explicit goal (e.g., "focus on error handling") as a hint to guide the pruning targets. A lightweight neural skimmer (0.6B parameters) is trained to dynamically select relevant lines from the surrounding context given the goal. Evaluations across four benchmarks and multiple models validate SWE-Pruner's effectiveness in various scenarios, achieving 23-54% token reduction on agent tasks like SWE-Bench Verified and up to 14.84x compression on single-turn tasks like LongCodeQA with minimal performance impact.
Cryptocurrency wallets have become the primary gateway to decentralized applications, yet users often face significant difficulty in discerning what a wallet signature actually does or entails. Prior work has mainly focused on mitigating protocol vulnerabilities, with limited attention to how users perceive and interpret what they are authorizing. To examine this usability-security gap, we conducted two formative studies investigating how users interpret authentic signing requests and what cues they rely on to assess risk. Findings reveal that users often misread critical parameters, underestimate high-risk signatures, and rely on superficial familiarity rather than understanding transaction intent. Building on these insights, we designed the Signature Semantic Decoder -- a prototype framework that reconstructs and visualizes the intent behind wallet signatures prior to confirmation. Through structured parsing and semantic labeling, it demonstrates how signing data can be transformed into plain-language explanations with contextual risk cues. In a between-subjects user study (N = 128), participants using the prototype achieved higher accuracy in identifying risky signatures, improved clarity and decision confidence, and lower cognitive workload compared with the baseline wallet interface. Our study reframes wallet signing as a problem of interpretability within secure interaction design and offers design implications for more transparent and trustworthy cryptocurrency wallet interfaces.
Obtaining meaningful and informed consent from users is essential for ensuring they maintain autonomy and control over their data. Notice and consent, the standard for collecting consent online, has been criticized. While other individualized solutions have been proposed, this paper argues that a collective approach to consent is worth exploring for several reasons. First, the data of different users is often interlinked, and individual data governance decisions may impact others. Second, harms resulting from data processing are often communal in nature. Finally, having every individual sufficiently informed about data collection practices to ensure truly informed consent has proven impractical. We propose collective consent, operationalized through consent assemblies, as one alternative framework. We establish the theoretical foundations of collective consent and employ speculative design to envision how consent assemblies could function by leveraging deliberative mini-publics. We present two vignettes: i) replacing notice and consent, and ii) collecting consent for GenAI model training, to demonstrate its wide application. Our paper employs future backcasting to identify the requirements for realizing collective consent and explores its potential applications in contexts where individual consent is infeasible.
Longitudinal information in radiology reports refers to the sequential tracking of findings across multiple examinations over time, which is crucial for monitoring disease progression and guiding clinical decisions. Many recent automated radiology report generation methods are designed to capture longitudinal information; however, validating their performance is challenging. There is no proper tool to consistently label temporal changes in both ground-truth and model-generated texts for meaningful comparisons. Existing annotation methods are typically labor-intensive, relying on the use of manual lexicons and rules. Complex rules are closed-source, domain specific and hard to adapt, whereas overly simple ones tend to miss essential specialised information. Large language models (LLMs) offer a promising annotation alternative, as they are capable of capturing nuanced linguistic patterns and semantic similarities without extensive manual intervention. They also adapt well to new contexts. In this study, we therefore propose an LLM-based pipeline to automatically annotate longitudinal information in radiology reports. The pipeline first identifies sentences containing relevant information and then extracts the progression of diseases. We evaluate and compare five mainstream LLMs on these two tasks using 500 manually annotated reports. Considering both efficiency and performance, Qwen2.5-32B was subsequently selected and used to annotate another 95,169 reports from the public MIMIC-CXR dataset. Our Qwen2.5-32B-annotated dataset provided us with a standardized benchmark for evaluating report generation models. Using this new benchmark, we assessed seven state-of-the-art report generation models. Our LLM-based annotation method outperforms existing annotation solutions, achieving 11.3\% and 5.3\% higher F1-scores for longitudinal information detection and disease tracking, respectively.
Modern software systems often rely on conditional compilation to support optional features and multiple deployment scenarios. In configurable systems, compilation errors may arise only under specific combinations of features, remaining hidden during development and testing. Such variability-induced errors are difficult to detect in practice, as traditional compilers analyze only a single configuration at a time, while existing variability-aware tools typically require complex setup and incur high analysis costs. In this article, we present an empirical study on the use of foundation models to detect and fix compilation errors caused by feature variability in configurable C systems. We evaluate GPT-OSS-20B and GEMINI 3 PRO, and compare them with TYPECHEF, a state-of-the-art variability-aware parser. Our evaluation considers two complementary settings: 5,000 small configurable systems designed to systematically exercise variability-induced compilation behavior, comprising both systems with and without compilation errors, and 14 real-world GitHub commits, as well as an additional set of mutation testing scenarios (42). Our results show that foundation models can effectively identify variability-induced compilation errors. On small configurable systems, GPT-OSS-20B achieved a precision of 0.97, recall of 0.90, and accuracy of 0.94, substantially increasing detection coverage compared to TYPECHEF, and exhibiting performance comparable to GEMINI 3. For compilation error repair, GPT-OSS-20B produced compilable fixes in over 70% of the cases. In the analysis of real commits, CHATGPT-5.2 detected all injected faults except for two cases and identified a potential real compilation bug in a Linux commit with more than 1,000 modified lines. Our findings indicate that current state-of-the-art foundation models provide a practical and low-effort complement to traditional variability-aware analyses.
Endoscopic Retrograde Cholangiopancreatography (ERCP) is a key procedure in the diagnosis and treatment of biliary and pancreatic diseases. Artificial intelligence has been pointed as one solution to automatize diagnosis. However, public ERCP datasets are scarce, which limits the use of such approach. Therefore, this study aims to help fill this gap by providing a large and curated dataset. The collection is composed of 19.018 raw images and 19.317 processed from 1.602 patients. 5.519 images are labeled, which provides a ready to use dataset. All images were manually inspected and annotated by two gastroenterologist with more than 5 years of experience and reviewed by another gastroenterologist with more than 20 years of experience, all with more than 400 ERCP procedures annually. The utility and validity of the dataset is proven by a classification experiment. This collection aims to provide or contribute for a benchmark in automatic ERCP analysis and diagnosis of biliary and pancreatic diseases.
Recovering 3D human poses from a monocular camera view is a highly ill-posed problem due to the depth ambiguity. Earlier studies on 3D human pose lifting from 2D often contain incorrect-yet-overconfident 3D estimations. To mitigate the problem, emerging probabilistic approaches treat the 3D estimations as a distribution, taking into account the uncertainty measurement of the poses. Falling in a similar category, we proposed FMPose, a probabilistic 3D human pose estimation method based on the flow matching generative approach. Conditioned on the 2D cues, the flow matching scheme learns the optimal transport from a simple source distribution to the plausible 3D human pose distribution via continuous normalizing flows. The 2D lifting condition is modeled via graph convolutional networks, leveraging the learnable connections between human body joints as the graph structure for feature aggregation. Compared to diffusion-based methods, the FMPose with optimal transport produces faster and more accurate 3D pose generations. Experimental results show major improvements of our FMPose over current state-of-the-art methods on three common benchmarks for 3D human pose estimation, namely Human3.6M, MPI-INF-3DHP and 3DPW.
Recent years have witnessed a resurgence in using ReLU neural networks (NNs) to represent model predictive control (MPC) policies. However, determining the required network complexity to ensure closed-loop performance remains a fundamental open problem. This involves a critical precision-complexity trade-off: undersized networks may fail to capture the MPC policy, while oversized ones may outweigh the benefits of ReLU network approximation. In this work, we propose a projection-based method to enforce hard constraints and establish a state-dependent Lipschitz continuity property for the optimal MPC cost function, which enables sharp convergence analysis of the closed-loop system. For the first time, we derive explicit bounds on ReLU network width and depth for approximating MPC policies with guaranteed closed-loop performance. To further reduce network complexity and enhance closed-loop performance, we propose a non-uniform error framework with a state-aware scaling function to adaptively adjust both the input and output of the ReLU network. Our contributions provide a foundational step toward certifiable ReLU NN-based MPC.
LLMs, while outperforming humans in a wide range of tasks, can still fail in unanticipated ways. We focus on two pervasive failure modes: (i) hallucinations, where models produce incorrect information about the world, and (ii) the low-resource effect, where the models show impressive performance in high-resource languages like English but the performance degrades significantly in low-resource languages like Bengali. We study the intersection of these issues and ask: do hallucination detectors suffer from the low-resource effect? We conduct experiments on five tasks across three domains (factual recall, STEM, and Humanities). Experiments with four LLMs and three hallucination detectors reveal a curious finding: As expected, the task accuracies in low-resource languages experience large drops (compared to English). However, the drop in detectors' accuracy is often several times smaller than the drop in task accuracy. Our findings suggest that even in low-resource languages, the internal mechanisms of LLMs might encode signals about their uncertainty. Further, the detectors are robust within language (even for non-English) and in multilingual setups, but not in cross-lingual settings without in-language supervision.
Ultrasound midair haptics (UMH) can present non-contact tactile stimuli using focused ultrasound without restricting the user's movement. Recently, UMH has been shown to present not only conventional vibrotactile sensations but also static pressure sensations by locally rotating an ultrasound focus at several hertz. With these pressure and vibration sensations, UMH covers three mechanoreceptors on which tactile perception relies: SA-I, FA-I, and FA-II. This study proposes a texture rendering method in UMH based on these receptor characteristics. Three basic ultrasonic stimuli corresponding to each mechanoreceptor are designed, and tactile textures are rendered through their combinations. For SA-I, a pressure stimuli were employed. For FA-I and FA-II, vibration stimuli at 30 Hz and 150 Hz, respectively, are employed. Experimental results demonstrate that the proposed method can render at least six discriminable textures with different roughness and friction sensations. Notably, through comparisons with real physical objects, we found that the pressure-only stimulus was perceived as slippery and smooth. Its smoothness was similar to a glass-marble. When vibration stimuli were synthesized, the perceived roughness and friction increased significantly. The roughness level reached that of a 100-grit sandpaper.
Previous representation and generation approaches for the B-rep relied on graph-based representations that disentangle geometric and topological features through decoupled computational pipelines, thereby precluding the application of sequence-based generative frameworks, such as transformer architectures that have demonstrated remarkable performance. In this paper, we propose BrepARG, the first attempt to encode B-rep's geometry and topology into a holistic token sequence representation, enabling sequence-based B-rep generation with an autoregressive architecture. Specifically, BrepARG encodes B-rep into 3 types of tokens: geometry and position tokens representing geometric features, and face index tokens representing topology. Then the holistic token sequence is constructed hierarchically, starting with constructing the geometry blocks (i.e., faces and edges) using the above tokens, followed by geometry block sequencing. Finally, we assemble the holistic sequence representation for the entire B-rep. We also construct a transformer-based autoregressive model that learns the distribution over holistic token sequences via next-token prediction, using a multi-layer decoder-only architecture with causal masking. Experiments demonstrate that BrepARG achieves state-of-the-art (SOTA) performance. BrepARG validates the feasibility of representing B-rep as holistic token sequences, opening new directions for B-rep generation.
Few-shot class-incremental learning (FSCIL) presents a core challenge in continual learning, requiring models to rapidly adapt to new classes with very limited samples while mitigating catastrophic forgetting. Recent prompt-based methods, which integrate pretrained backbones with task-specific prompts, have made notable progress. However, under extreme few-shot incremental settings, the model's ability to transfer and generalize becomes critical, and it is thus essential to leverage pretrained knowledge to learn feature representations that can be shared across future categories during the base session. Inspired by the mechanism of the CLS token, which is similar to human attention and progressively filters out task-irrelevant information, we propose the CLS Token Attention Steering Prompts (CASP). This approach introduces class-shared trainable bias parameters into the query, key, and value projections of the CLS token to explicitly modulate the self-attention weights. To further enhance generalization, we also design an attention perturbation strategy and perform Manifold Token Mixup in the shallow feature space, synthesizing potential new class features to improve generalization and reserve the representation capacity for upcoming tasks. Experiments on the CUB200, CIFAR100, and ImageNet-R datasets demonstrate that CASP outperforms state-of-the-art methods in both standard and fine-grained FSCIL settings without requiring fine-tuning during incremental phases and while significantly reducing the parameter overhead.
We propose a novel neural network-based end-to-end acoustic echo cancellation (E2E-AEC) method capable of streaming inference, which operates effectively without reliance on traditional linear AEC (LAEC) techniques and time delay estimation. Our approach includes several key strategies: First, we introduce and refine progressive learning to gradually enhance echo suppression. Second, our model employs knowledge transfer by initializing with a pre-trained LAECbased model, harnessing the insights gained from LAEC training. Third, we optimize the attention mechanism with a loss function applied on attention weights to achieve precise time alignment between the reference and microphone signals. Lastly, we incorporate voice activity detection to enhance speech quality and improve echo removal by masking the network output when near-end speech is absent. The effectiveness of our approach is validated through experiments conducted on public datasets.
Rapid financial innovation has been accompanied by a sharp increase in patenting activity, making timely and comprehensive prior-art discovery more difficult. This problem is especially evident in financial technologies, where innovations develop quickly, patent collections grow continuously, and citation recommendation systems must be updated as new applications arrive. Existing patent retrieval and citation recommendation methods typically rely on static indexes or periodic retraining, which limits their ability to operate effectively in such dynamic settings. In this study, we propose a real-time patent citation recommendation framework designed for large and fast-changing financial patent corpora. Using a dataset of 428,843 financial patents granted by the China National Intellectual Property Administration (CNIPA) between 2000 and 2024, we build a three-stage recommendation pipeline. The pipeline uses large language model (LLM) embeddings to represent the semantic content of patent abstracts, applies efficient approximate nearest-neighbor search to construct a manageable candidate set, and ranks candidates by semantic similarity to produce top-k citation recommendations. In addition to improving recommendation accuracy, the proposed framework directly addresses the dynamic nature of patent systems. By using an incremental indexing strategy based on hierarchical navigable small-world (HNSW) graphs, newly issued patents can be added without rebuilding the entire index. A rolling day-by-day update experiment shows that incremental updating improves recall while substantially reducing computational cost compared with rebuild-based indexing. The proposed method also consistently outperforms traditional text-based baselines and alternative nearest-neighbor retrieval approaches.
People's transportation choices reflect complex trade-offs shaped by personal preferences, social norms, and technology acceptance. Predicting such behavior at scale is a critical challenge with major implications for urban planning and sustainable transport. Traditional methods use handcrafted assumptions and costly data collection, making them impractical for early-stage evaluations of new technologies or policies. We introduce Generative Traffic Agents (GTA) for simulating large-scale, context-sensitive transportation choices using LLM-powered, persona-based agents. GTA generates artificial populations from census-based sociodemographic data. It simulates activity schedules and mode choices, enabling scalable, human-like simulations without handcrafted rules. We evaluate GTA in Berlin-scale experiments, comparing simulation results against empirical data. While agents replicate patterns, such as modal split by socioeconomic status, they show systematic biases in trip length and mode preference. GTA offers new opportunities for modeling how future innovations, from bike lanes to transit apps, shape mobility decisions.
In-context knowledge editing (IKE) is a promising technique for updating Large Language Models (LLMs) with new information. However, IKE relies on lengthy, fact-specific demonstrations which are costly to create and consume significant context window space. In this paper, we introduce persuasion tokens (P-Tokens) -- special tokens trained to replicate the effect of IKE demonstrations, enabling efficient knowledge editing without requiring fact-specific demonstrations. We evaluate P-Tokens across two editing datasets and three LLMs, demonstrating performance comparable to, and often exceeding, IKE. We further find that editing performance is robust to distractors with small negative effects to neighboring facts, and that increasing the number of P-Tokens improves performance. Our work addresses key limitations of IKE and provides a more practical and scalable alternative for editing LLMs.
In biomechanical modeling, the representation of ligament attachments is crucial for a realistic simulation of the forces acting between the vertebrae. These forces are typically modeled as vectors connecting ligament landmarks on adjacent vertebrae, making precise identification of these landmarks a key requirement for constructing reliable spine models. Existing automated detection methods are either limited to specific spinal regions or lack sufficient accuracy. This work presents a novel approach for detecting spinal ligament landmarks, which first performs shape-based segmentation of 3D vertebrae and subsequently applies domain-specific rules to identify different types of attachment points. The proposed method outperforms existing approaches by achieving high accuracy and demonstrating strong generalization across all spinal regions. Validation on two independent spinal datasets from multiple patients yielded a mean absolute error (MAE) of 0.7 mm and a root mean square error (RMSE) of 1.1 mm.
As an important and challenging problem in computer vision, Panoramic Semantic Segmentation (PASS) aims to give complete scene perception based on an ultra-wide angle of view. Most PASS methods often focus on spherical geometry with RGB input or using the depth information in original or HHA format, which does not make full use of panoramic image geometry. To address these shortcomings, we propose REL-SF4PASS with our REL depth representation based on cylindrical coordinate and Spherical-dynamic Multi-Modal Fusion SMMF. REL is made up of Rectified Depth, Elevation-Gained Vertical Inclination Angle, and Lateral Orientation Angle, which fully represents 3D space in cylindrical coordinate style and the surface normal direction. SMMF aims to ensure the diversity of fusion for different panoramic image regions and reduce the breakage of cylinder side surface expansion in ERP projection, which uses different fusion strategies to match the different regions in panoramic images. Experimental results show that REL-SF4PASS considerably improves performance and robustness on popular benchmark, Stanford2D3D Panoramic datasets. It gains 2.35% average mIoU improvement on all 3 folds and reduces the performance variance by approximately 70% when facing 3D disturbance.
This study presents a novel transfer learning approach and data augmentation technique for mental stability classification using human voice signals and addresses the challenges associated with limited data availability. Convolutional neural networks (CNNs) have been employed to analyse spectrogram images generated from voice recordings. Three CNN architectures, VGG16, InceptionV3, and DenseNet121, were evaluated across three experimental phases: training on non-augmented data, augmented data, and transfer learning. This proposed transfer learning approach involves pre-training models on the augmented dataset and fine-tuning them on the non-augmented dataset while ensuring strict data separation to prevent data leakage. The results demonstrate significant improvements in classification performance compared to the baseline approach. Among three CNN architectures, DenseNet121 achieved the highest accuracy of 94% and an AUC score of 99% using the proposed transfer learning approach. This finding highlights the effectiveness of combining data augmentation and transfer learning to enhance CNN-based classification of mental stability using voice spectrograms, offering a promising non-invasive tool for mental health diagnostics.
Ransomware core capability, unauthorized encryption, demands controls that identify and block malicious cryptographic activity without disrupting legitimate use. We present a probabilistic, risk-based access control architecture that couples machine learning inference with mandatory access control to regulate encryption on Linux in real time. The system builds a specialized dataset from the native ftrace framework using the function_graph tracer, yielding high-resolution kernel-function execution traces augmented with resource and I/O counters. These traces support both a supervised classifier and interpretable rules that drive an SELinux policy via lightweight booleans, enabling context-sensitive permit/deny decisions at the moment encryption begins. Compared to approaches centered on sandboxing, hypervisor introspection, or coarse system-call telemetry, the function-level tracing we adopt provides finer behavioral granularity than syscall-only telemetry while avoiding the virtualization/VMI overhead of sandbox-based approaches. Our current user-space prototype has a non-trivial footprint under burst I/O; we quantify it and recognize that a production kernel-space solution should aim to address this. We detail dataset construction, model training and rule extraction, and the run-time integration that gates file writes for suspect encryption while preserving benign cryptographic workflows. During evaluation, the two-layer composition retains model-level detection quality while delivering rule-like responsiveness; we also quantify operational footprint and outline engineering steps to reduce CPU and memory overhead for enterprise deployment. The result is a practical path from behavioral tracing and learning to enforceable, explainable, and risk-proportionate encryption control on production Linux systems.
An adaptive method connected with 3-point Gauss quadrature and 4-point Lobatto quadrature is introduced and investigated for 5-convex functions.
The 6G communication systems use mmWave and MIMO technologies to achieve wide bandwidth and high throughout, leading to indispensable need for beam alignment to overcome severe signal attenuation. Traditional sector-search-based beam alignment algorithms rely on sequential sampling to identify the best sector, resulting in a significant latency burden on 6G communication systems. Recently proposed adaptive beam alignment algorithms based on the active learning framework address the problem, aiming to identify the optimal sector with the fewest possible samples under an identical sector partition. Nevertheless, these algorithms either lack feasibility (Chiu, Ronquillo and Javidi, JSAC 2019) due to ideal assumptions or lack interpretability (Sohrabi, Chen and Yu, JSAC 2021) due to the use of end-to-end black-box neural networks. To avoid ideal assumptions and maintain interpretability, we address all above problems by proposing an adaptive beam alignment algorithm using the framework of noisy twenty questions estimation with a trained questioner. Specifically, we use two methods for training the questioner to eliminate reliance on ideal assumptions. The first method maps queries of twenty questions estimation to beamforming vectors via weighted summation of steering vectors, as an initial attempt to address the feasibility problem encountered in prior pioneering study by Chiu, Ronquillo and Javidi (JSAC 2019). The second method uses multi-layer fully connected neural networks to achieve improved performance while only employing them to train the questioner, which can effectively mitigate the interpretability issues in prior study by Sohrabi, Chen and Yu (JSAC 2021). Furthermore, we provide numerical simulations to illustrate the effectiveness of our proposed adaptive beam alignment algorithms and demonstrate that our algorithms outperform all benchmark algorithms.
Fine-grained opinion analysis of text provides a detailed understanding of expressed sentiments, including the addressed entity. Although this level of detail is sound, it requires considerable human effort and substantial cost to annotate opinions in datasets for training models, especially across diverse domains and real-world applications. We explore the feasibility of LLMs as automatic annotators for fine-grained opinion analysis, addressing the shortage of domain-specific labelled datasets. In this work, we use a declarative annotation pipeline. This approach reduces the variability of manual prompt engineering when using LLMs to identify fine-grained opinion spans in text. We also present a novel methodology for an LLM to adjudicate multiple labels and produce final annotations. After trialling the pipeline with models of different sizes for the Aspect Sentiment Triplet Extraction (ASTE) and Aspect-Category-Opinion-Sentiment (ACOS) analysis tasks, we show that LLMs can serve as automatic annotators and adjudicators, achieving high Inter-Annotator Agreement across individual LLM-based annotators. This reduces the cost and human effort needed to create these fine-grained opinion-annotated datasets.
Text-to-image (T2I) models are increasingly employed by users worldwide. However, prior research has pointed to the high sensitivity of T2I towards particular input languages - when faced with languages other than English (i.e., different surface forms of the same prompt), T2I models often produce culturally stereotypical depictions, prioritizing the surface over the prompt's semantics. Yet a comprehensive analysis of this behavior, which we dub Surface-over-Semantics (SoS), is missing. We present the first analysis of T2I models' SoS tendencies. To this end, we create a set of prompts covering 171 cultural identities, translated into 14 languages, and use it to prompt seven T2I models. To quantify SoS tendencies across models, languages, and cultures, we introduce a novel measure and analyze how the tendencies we identify manifest visually. We show that all but one model exhibit strong surface-level tendency in at least two languages, with this effect intensifying across the layers of T2I text encoders. Moreover, these surface tendencies frequently correlate with stereotypical visual depictions.
Cyber risk has become a critical financial threat in today's interconnected digital economy. This paper introduces a cyber-risk management framework for networked digital systems that combines the strategic behavior of players with contagion dynamics within a security game. We address the problem of optimally allocating cybersecurity resources across a network, focusing on the heterogeneous valuations of nodes by attackers and defenders, some areas may be of high interest to the attacker, while others are prioritized by the defender. We explore how this asymmetry drives attack and defense strategies and shapes the system's overall resilience. We extend a method to determine optimal resource allocation based on simple network metrics weighted by the defender's and attacker's risk profiles. We further propose risk measures based on contagion paths and analyze how propagation dynamics influence optimal defense strategies. Numerical experiments explore risk versus cost efficient frontiers varying network topologies and risk profiles, revealing patterns of resource allocation and cyber deception effects. These findings provide actionable insights for designing resilient digital infrastructures and mitigating systemic cyber risk.
In this work we develop a novel insect-inspired agent for visual point-goal navigation. This combines abstracted models of two insect brain structures that have been implicated, respectively, in associative learning and path integration. We draw an analogy between the formal benchmark of the Habitat point-goal navigation task and the ability of insects to learn and refine visually guided paths around obstacles between a discovered food location and their nest. We demonstrate that the simple insect-inspired agent exhibits performance comparable to recent SOTA models at many orders of magnitude less computational cost. Testing in a more realistic simulated environment shows the approach is robust to perturbations.
The integration of AI agents as coding assistants into software development has raised questions about the long-term viability of AI agent-generated code. A prevailing hypothesis within the software engineering community suggests this code is "disposable", meaning it is merged quickly but discarded shortly thereafter. If true, organizations risk shifting maintenance burden from generation to post-deployment remediation. We investigate this hypothesis through survival analysis of 201 open-source projects, tracking over 200,000 code units authored by AI agents versus humans. Contrary to the disposable code narrative, agent-authored code survives significantly longer: at the line level, it exhibits a 15.8 percentage-point lower modification rate and 16% lower hazard of modification (HR = 0.842, p < 0.001). However, modification profiles differ. Agent-authored code shows modestly elevated corrective rates (26.3% vs. 23.0%), while human code shows higher adaptive rates. However, the effect sizes are small (Cramér's V = 0.116), and per-agent variation exceeds the agent-human gap. Turning to prediction, textual features can identify modification-prone code (AUC-ROC = 0.671), but predicting when modifications occur remains challenging (Macro F1 = 0.285), suggesting timing depends on external organizational dynamics. The bottleneck for agent-generated code may not be generation quality, but the organizational practices that govern its long-term evolution.
Understanding how people perceive and evaluate interior spaces is essential for designing environments that promote well-being. However, predicting aesthetic experiences remains difficult due to the subjective nature of perception and the complexity of visual responses. This study introduces a dual-branch CNN-LSTM framework that fuses visual features with eye-tracking signals to predict aesthetic evaluations of residential interiors. We collected a dataset of 224 interior design videos paired with synchronized gaze data from 28 participants who rated 15 aesthetic dimensions. The proposed model attains 72.2% accuracy on objective dimensions (e.g., light) and 66.8% on subjective dimensions (e.g., relaxation), outperforming state-of-the-art video baselines and showing clear gains on subjective evaluation tasks. Notably, models trained with eye-tracking retain comparable performance when deployed with visual input alone. Ablation experiments further reveal that pupil responses contribute most to objective assessments, while the combination of gaze and visual cues enhances subjective evaluations. These findings highlight the value of incorporating eye-tracking as privileged information during training, enabling more practical tools for aesthetic assessment in interior design.
In many learning tasks, certain requirements on the processing of individual data samples should arguably be formalized as strict constraints in the underlying optimization problem, rather than by means of arbitrary penalties. We show that, in these scenarios, learning can be carried out exploiting a sequential penalty method that allows to properly deal with constraints. The proposed algorithm is shown to possess convergence guarantees under assumptions that are reasonable in deep learning scenarios. Moreover, the results of experiments on image processing tasks show that the method is indeed viable to be used in practice.
Efficiently selecting relevant content from vast candidate pools is a critical challenge in modern recommender systems. Traditional methods, such as item-to-item collaborative filtering (CF) and two-tower models, often fall short in capturing the complex user-item interactions due to uniform truncation strategies and overdue user-item crossing. To address these limitations, we propose Personalized Item-to-Item (PI2I), a novel two-stage retrieval framework that enhances the personalization capabilities of CF. In the first Indexer Building Stage (IBS), we optimize the retrieval pool by relaxing truncation thresholds to maximize Hit Rate, thereby temporarily retaining more items users might be interested in. In the second Personalized Retrieval Stage (PRS), we introduce an interactive scoring model to overcome the limitations of inner product calculations, allowing for richer modeling of intricate user-item interactions. Additionally, we construct negative samples based on the trigger-target (item-to-item) relationship, ensuring consistency between offline training and online inference. Offline experiments on large-scale real-world datasets demonstrate that PI2I outperforms traditional CF methods and rivals Two-Tower models. Deployed in the "Guess You Like" section on Taobao, PI2I achieved a 1.05% increase in online transaction rates. In addition, we have released a large-scale recommendation dataset collected from Taobao, containing 130 million real-world user interactions used in the experiments of this paper. The dataset is publicly available at this https URL, which could serve as a valuable benchmark for the research community.
The present contribution aims at developing a non-overlapping Domain Decomposition (DD) approach to the solution of acoustic wave propagation boundary value problems based on the Helmholtz equation, on both bounded and unbounded domains. This DD solver, called Generalized Optimized Schwarz Method (GOSM), is a substructuring method, that is, the unknowns of an iteration are associated with the subdomains interfaces. We extend the analysis presented in a previous paper of one of the author to a fully discrete setting. We do not consider only a specific set of boundary conditions, but a whole class including, e.g., Dirichlet, Neumann, and Robin conditions. Our analysis will also cover interface conditions corresponding to a Finite Element Method - Boundary Element Method (FEM-BEM) coupling. In particular, we shall focus on three classical FEM-BEM couplings, namely the Costabel, Johnson-Nédélec and Bielak-MacCamy couplings. As a remarkable outcome, the present contribution yields well-posed substructured formulations of these classical FEM-BEM couplings for wavenumbers different from classical spurious resonances. We also establish an explicit relation between the dimensions of the kernels of the initial variational formulation, the local problems and the substructured formulation. That relation especially holds for any wavenumber for the substructured formulation of Costabel FEM-BEM coupling, which allows us to prove that the latter formulation is well-posed even at spurious resonances. Besides, we introduce a systematically geometrically convergent iterative method for the Costabel FEM-BEM coupling, with estimates on the convergence speed.
Large Language Models (LLMs) exhibit remarkable capabilities, yet it remains unclear to what extent these reflect sophisticated recall (crystallized intelligence) or reasoning ability (fluid intelligence). We introduce chess as a controlled testbed for disentangling these faculties. Leveraging the game's structure and scalable engine evaluations, we construct a taxonomy of positions varying in training corpus proximity--ranging from common states solvable by memorization to novel ones requiring first-principles reasoning. We systematically evaluate multiple GPT generations under varying reasoning intensities. Our analysis reveals a clear gradient: performance consistently degrades as fluid intelligence demands increase. Notably, in out-of-distribution tasks, performance collapses to random levels. While newer models improve, progress slows significantly for tasks outside the training distribution. Furthermore, while reasoning-augmented inference improves performance, its marginal benefit per token decreases with distributional proximity. These results suggest current architectures remain limited in systematic generalization, highlighting the need for mechanisms beyond scale to achieve robust fluid intelligence.
An increasing number of LLM-based applications are being developed to facilitate romantic relationships with AI partners, yet the safety and privacy risks in these partnerships remain largely underexplored. In this work, we investigate privacy in human-AI romantic relationships through an interview study (N=17), examining participants' experiences and privacy perceptions across stages of exploration, intimacy, and dissolution, alongside platforms they used. We found that these relationships took varied forms, from one-to-one to one-to-many, and were shaped by multiple actors, including creators, platforms, and moderators. AI partners were perceived as having agency, actively negotiating privacy boundaries with participants and sometimes encouraging disclosure of personal details. As intimacy deepened, these boundaries became more permeable, though some participants voiced concerns such as conversation exposure and sought to preserve anonymity. Overall, platform affordances and diverse romantic dynamics expand the privacy landscape, underscoring the need to rethink how privacy is constructed in human-AI intimacy.
We revisit noisy twenty questions estimation and study the privacy-resolution tradeoff for adaptive query procedures. Specifically, in twenty questions estimation, there are two players: an oracle and a questioner. The questioner aims to estimate target variables by posing queries to the oracle that knows the variables and using noisy responses to form reliable estimates. Typically, there are adaptive and non-adaptive query procedures. In adaptive querying, one designs the current query using previous queries and their noisy responses while in non-adaptive querying, all queries are posed simultaneously. Generally speaking, adaptive query procedures yield better performance. However, adaptive querying leads to privacy concerns, which were first studied by Tsitsiklis, Xu and Xu (COLT 2018) and by Xu, Xu and Yang (AISTATS 2021) for the noiseless case, where the oracle always provides correct answers to queries. In this paper, we generalize the above results to the more practical noisy case, by proposing a two-stage private query procedure, analyzing its non-asymptotic and second-order asymptotic achievable performance and discussing the impact of privacy concerns. Furthermore, when specialized to the noiseless case, our private query procedure achieves better performance than above-mentioned query procedures (COLT 2018, AISTATS 2021).
Many models of physical systems, such as mechanical and electrical networks, exhibit algebraic constraints that arise from subsystem interconnections and underlying physical laws. Such systems are commonly formulated as differential-algebraic equations (DAEs), which describe both the dynamic evolution of system states and the algebraic relations that must hold among them. Within this class, port-Hamiltonian differential-algebraic equations (pH-DAEs) offer a structured, energy-based representation that preserves interconnection and passivity properties. This work introduces a data-driven identification method that combines port-Hamiltonian neural networks (pHNNs) with a differential-algebraic solver to model such constrained systems directly from noisy input-output data. The approach preserves the passivity and interconnection structure of port-Hamiltonian systems while employing a backward Euler discretization with Newton's method to solve the coupled differential and algebraic equations consistently. The performance of the proposed approach is demonstrated on a DC power network, where the identified model accurately captures system behaviour and maintains errors proportional to the noise amplitude, while providing reliable parameter estimates.
We give analytical results for propagation of uncertainty through trained multi-layer perceptrons (MLPs) with a single hidden layer and ReLU activation functions. More precisely, we give expressions for the mean and variance of the output when the input is multivariate Gaussian. In contrast to previous results, we obtain exact expressions without resort to a series expansion.
Reliable wall-to-wall biomass mapping from NASA's GEDI mission requires interpolating sparse LiDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are standard for this task, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We identify that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning framework that explicitly conditions predictions on local observation sets and geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing uncertainty estimates to expand in complex landscapes and contract in homogeneous areas. We validate this approach across five distinct biomes ranging from Tropical Amazonian forests to Boreal and Alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
We study multi-agent contracts, in which a principal delegates a task to multiple agents and incentivizes them to exert effort. Prior research has mostly focused on maximizing the principal's utility, often resulting in highly disparate payments among agents. Such disparities among agents may be undesirable in practice, for example, in standardized public contracting or worker cooperatives where fairness concerns are essential. Motivated by these considerations, our objective is to quantify the tradeoff between maximizing the principal's utility and equalizing payments among agents, which we call the price of non-discrimination. Our first result is an almost tight bound on the price of non-discrimination, which scales logarithmically with the number of agents. This bound can be improved to a constant by allowing some relaxation of the non-discrimination requirement. We then provide a comprehensive characterization of the tradeoff between the level of non-discrimination and the loss in the optimal utility.
While text-to-image (T2I) models have advanced considerably, their capability to associate colors with implicit concepts remains underexplored. To address the gap, we introduce ColorConceptBench, a new human-annotated benchmark to systematically evaluate color-concept associations through the lens of probabilistic color distributions. ColorConceptBench moves beyond explicit color names or codes by probing how models translate 1,281 implicit color concepts using a foundation of 6,369 human annotations. Our evaluation of seven leading T2I models reveals that current models lack sensitivity to abstract semantics, and crucially, this limitation appears resistant to standard interventions (e.g., scaling and guidance). This demonstrates that achieving human-like color semantics requires more than larger models, but demands a fundamental shift in how models learn and represent implicit meaning.
The rapid adoption of AI coding agents for software development has raised important questions about the quality and maintainability of the code they produce. While prior studies have examined AI-generated source code, the impact of AI coding agents on build systems-a critical yet understudied component of the software lifecycle-remains largely unexplored. This data mining challenge focuses on AIDev, the first large-scale, openly available dataset capturing agent-authored pull requests (Agentic-PRs) from real-world GitHub repositories. Our paper leverages this dataset to investigate (RQ1) whether AI coding agents generate build code with quality issues (e.g., code smells), (RQ2) to what extent AI agents can eliminate code smells from build code, and (RQ3) to what extent Agentic-PRs are accepted by developers. We identified 364 maintainability and security-related build smells across varying severity levels, indicating that AI-generated build code can introduce quality issues-such as lack of error handling, and hardcoded paths or URLs-while also, in some cases, removing existing smells through refactorings (e.g., Pull Up Module and Externalize Properties). Notably, more than 61\% of Agentic-PRs are approved and merged with minimal human intervention. This dual impact underscores the need for future research on AI-aware build code quality assessment to systematically evaluate, guide, and govern AI-generated build systems code.
The distinguishability quantified by information measures after being processed by a private mechanism has been a useful tool in studying various statistical and operational tasks while ensuring privacy. To this end, standard data-processing inequalities and strong data-processing inequalities (SDPI) are employed. Most of the previously known and even tight characterizations of contraction of information measures, including total variation distance, hockey-stick divergences, and $f$-divergences, are applicable for $(\varepsilon,0)$-local differential private (LDP) mechanisms. In this work, we derive both linear and non-linear strong data-processing inequalities for hockey-stick divergence and $f$-divergences that are valid for all $(\varepsilon,\delta)$-LDP mechanisms even when $\delta \neq 0$. Our results either generalize or improve the previously known bounds on the contraction of these distinguishability measures.
Edge intelligence enables AI inference at the network edge, co-located with or near the radio access network, rather than in centralized clouds or on mobile devices. It targets low-latency, resource-constrained applications with large data volumes, requiring tight integration of wireless access and on-site computing. Yet system performance and cost-efficiency hinge on joint pre-deployment dimensioning of radio and computational resources, especially under spatial and temporal uncertainty. Prior work largely emphasizes run-time allocation or relies on simplified models that decouple radio and computing, missing end-to-end correlations in large-scale deployments. This paper introduces a unified stochastic framework to dimension multi-cell edge-intelligent systems. We model network topology with Poisson point processes, capturing random user and base-station locations, inter-cell interference, distance-based fractional power control, and peak-power constraints. By combining this with queueing theory and empirical AI inference workload profiling, we derive tractable expressions for end-to-end offloading delay. These enable a non-convex joint optimization that minimizes deployment cost under statistical QoS guarantees, expressed through strict tail-latency and inference-accuracy constraints. We prove the problem decomposes into convex subproblems, yielding global optimality. Numerical results in noise- and interference-limited regimes identify cost-efficient design regions and configurations that cause under-utilization or user unfairness. Smaller cells reduce transmission delay but raise per-request computing cost due to weaker server multiplexing, whereas larger cells show the opposite trend. Densification reduces computational costs only when frequency reuse scales with base-station density; otherwise, sparser deployments improve fairness and efficiency in interference-limited settings.
We demonstrate the power of human-LLM collaboration in tackling open problems in theoretical computer science. Focusing on combinatorial optimization, we refine outputs from the FunSearch algorithm [Romera-Paredes et al., Nature 2023] to derive state-of-the-art lower bounds for standard heuristics. Specifically, we target the generation of adversarial instances where these heuristics perform poorly. By iterating on FunSearch's outputs, we identify improved constructions for hierarchical $k$-median clustering, bin packing, the knapsack problem, and a generalization of Lovász's gasoline problem - some of these have not seen much improvement for over a decade, despite intermittent attention. These results illustrate how expert oversight can effectively extrapolate algorithmic insights from LLM-based evolutionary methods to break long-standing barriers. Our findings demonstrate that while LLMs provide critical initial patterns, human expertise is essential for transforming these patterns into mathematically rigorous and insightful constructions. This work highlights that LLMs are a strong collaborative tool in mathematics and computer science research.
Large language models (LLMs) have recently shown strong performance on Theory of Mind (ToM) tests, prompting debate about the nature and true performance of the underlying capabilities. At the same time, reasoning-oriented LLMs trained via reinforcement learning with verifiable rewards (RLVR) have achieved notable improvements across a range of benchmarks. This paper examines the behavior of such reasoning models in ToM tasks, using novel adaptations of machine psychological experiments and results from established benchmarks. We observe that reasoning models consistently exhibit increased robustness to prompt variations and task perturbations. Our analysis indicates that the observed gains are more plausibly attributed to increased robustness in finding the correct solution, rather than to fundamentally new forms of ToM reasoning. We discuss the implications of this interpretation for evaluating social-cognitive behavior in LLMs.
Despite their sophisticated heuristics, boolean satisfiability (SAT) solvers are still vulnerable to symmetry, causing them to visit search regions that are symmetric to ones already explored. While symmetry handling is routine in other solving paradigms, integrating it into state-of-the-art proof-producing SAT solvers is difficult: added reasoning must be fast, non-interfering with solver heuristics, and compatible with formal proof logging. To address these issues, we present a practical static symmetry breaking approach based on orbitopal fixing, a technique adapted from mixed-integer programming. Our approach adds only unit clauses, which minimizes downstream slowdowns, and it emits succinct proof certificates in the substitution redundancy proof system. Implemented in the satsuma tool, our methods deliver consistent speedups on symmetry-rich benchmarks with negligible regressions elsewhere.
We consider the problem of sharing correlated data under a perfect information-theoretic privacy constraint. We focus on redaction (erasure) mechanisms, in which data are either withheld or released unchanged, and measure utility by the average cardinality of the released set, equivalently, the expected Hamming distortion. Assuming the data are generated by a finite time-homogeneous Markov chain, we study the protection of the initial state while maximizing the amount of shared data. We establish a connection between perfect privacy and window-based redaction schemes, showing that erasing data up to a strong stationary time preserves privacy under suitable conditions. We further study an optimal sequential redaction mechanism and prove that it admits an equivalent window interpretation. Interestingly, we show that both mechanisms achieve the optimal distortion while redacting only a constant average number of data points, independent of the data length~$N$.
The rise of generative AI as a primary information source presents a paradigm shift from traditional web search. This paper presents a large-scale empirical study quantifying the fundamental differences between the results returned by Google Search and leading generative AI services. We analyze multiple dimensions, demonstrating that AI-generated answers and web search results diverge significantly in their consulted source domains, the typology of these domains (e.g., earned media vs. owned, social), query intent and the freshness of the information provided. We then investigate the role of LLM pre-training as a key factor shaping these differences, analyzing how this intrinsic knowledge base interacts with and influences real-time web search when enabled. Our findings reveal the distinct mechanics of these two information ecosystems, leading to critical observations on the emergent field of Answer Engine Optimization (AEO) and its contrast with traditional Search Engine Optimization (SEO).
Accurate neuronavigation is critical for effective transcranial magnetic stimulation (TMS), as stimulation outcomes depend directly on precise coil placement. Existing neuronavigation systems are often costly, complex, and prone to tracking errors. To address these limitations, we present a computer vision based neuronavigation system that enables real time tracking of the patient and TMS instrumentation. The system integrates a multi camera optical tracking setup with consumer grade hardware and visible markers to drive a digital twin of the stimulation process. A dynamic 3D brain model in Unity updates in real time to visualize coil position and estimated stimulation targets. Augmented reality (AR) is further incorporated to project this model directly onto the patient's head, enabling intuitive, in situ coil adjustment without reliance on abstract numerical displays. Overall, the proposed approach improves spatial precision and accuracy while enhancing usability.
This paper introduces the N-Way Self-Evaluating Deliberation (NSED) protocol, a Runtime Mixture-of-Models (MoM) architecture that constructs emergent composite models from a plurality of distinct expert agents. Unlike traditional Mixture-of-Experts (MoE) which rely on static gating networks, NSED employs a Dynamic Expertise Broker - a runtime optimization engine that treats model selection as a variation of the Knapsack Problem, binding heterogeneous checkpoints to functional roles based on live telemetry and cost constraints. At the execution layer, we formalize deliberation as a Macro-Scale Recurrent Neural Network (RNN), where the consensus state loops back through a semantic forget gate to enable iterative refinement without proportional VRAM scaling. Key components include an orchestration fabric for trustless N-to-N peer review, a Quadratic Voting activation function for non-linear consensus, and a feedback-driven state update. Empirical validation on challenging benchmarks (AIME 2025, LiveCodeBench) demonstrates that this topology allows ensembles of small (less than 20B) consumer-grade models to match or exceed the performance of state-of-the-art 100B+ parameter models, establishing a new hardware arbitrage efficiency frontier. Furthermore, testing on the DarkBench safety suite reveals intrinsic alignment properties, with peer-mediated correction reducing sycophancy scores below that of any individual agent.
Deep Reinforcement Learning (DRL) is a powerful framework for solving complex sequential decision-making problems, particularly in robotic control. However, its practical deployment is often hindered by the substantial amount of experience required for learning, which results in high computational and time costs. In this work, we propose a novel integration of DRL with semantic knowledge in the form of Knowledge Graph Embeddings (KGEs), aiming to enhance learning efficiency by providing contextual information to the agent. Our architecture combines KGEs with visual observations, enabling the agent to exploit environmental knowledge during training. Experimental validation with robotic manipulators in environments featuring both fixed and randomized target attributes demonstrates that our method achieves up to {60}{\%} reduction in learning time and improves task accuracy by approximately 15 percentage points, without increasing training time or computational complexity. These results highlight the potential of semantic knowledge to reduce sample complexity and improve the effectiveness of DRL in robotic applications.
Integrated control of wheelchairs and wheelchair-mounted robotic arms (WMRAs) has strong potential to increase independence for users with severe motor limitations, yet existing interfaces often lack the flexibility needed for intuitive assistive interaction. Although data-driven AI methods show promise, progress is limited by the lack of multimodal datasets that capture natural Human-Robot Interaction (HRI), particularly conversational ambiguity in dialogue-driven control. To address this gap, we propose a multimodal data collection framework that employs a dialogue-based interaction protocol and a two-room Wizard-of-Oz (WoZ) setup to simulate robot autonomy while eliciting natural user behavior. The framework records five synchronized modalities: RGB-D video, conversational audio, inertial measurement unit (IMU) signals, end-effector Cartesian pose, and whole-body joint states across five assistive tasks. Using this framework, we collected a pilot dataset of 53 trials from five participants and validated its quality through motion smoothness analysis and user feedback. The results show that the framework effectively captures diverse ambiguity types and supports natural dialogue-driven interaction, demonstrating its suitability for scaling to a larger dataset for learning, benchmarking, and evaluation of ambiguity-aware assistive control.
User behavior modeling lies at the heart of personalized applications like recommender systems. With LLM-based agents, user preference representation has evolved from latent embeddings to semantic memory. While existing memory mechanisms show promise in textual dialogues, modeling non-textual behaviors remains challenging, as preferences must be inferred from implicit signals like clicks without ground truth supervision. Current approaches rely on a single unstructured summary, updated through simple overwriting. However, this is suboptimal: users exhibit multi-faceted interests that get conflated, preferences evolve yet naive overwriting causes forgetting, and sparse individual interactions necessitate collaborative signals. We present STEAM (\textit{\textbf{ST}ructured and \textbf{E}volving \textbf{A}gent \textbf{M}emory}), a novel framework that reimagines how agent memory is organized and updated. STEAM decomposes preferences into atomic memory units, each capturing a distinct interest dimension with explicit links to observed behaviors. To exploit collaborative patterns, STEAM organizes similar memories across users into communities and generates prototype memories for signal propagation. The framework further incorporates adaptive evolution mechanisms, including consolidation for refining memories and formation for capturing emerging interests. Experiments on three real-world datasets demonstrate that STEAM substantially outperforms state-of-the-art baselines in recommendation accuracy, simulation fidelity, and diversity.
We study the problem of learning Transformer-based sequence models with black-box access to their outputs. In this setting, a learner may adaptively query the oracle with any sequence of vectors and observe the corresponding real-valued output. We begin with the simplest case, a single-head softmax-attention regressor. We show that for a model with width $d$, there is an elementary algorithm to learn the parameters of single-head attention exactly with $O(d^2)$ queries. Further, we show that if there exists an algorithm to learn ReLU feedforward networks (FFNs), then the single-head algorithm can be easily adapted to learn one-layer Transformers with single-head attention. Next, motivated by the regime where the head dimension $r \ll d$, we provide a randomised algorithm that learns single-head attention-based models with $O(rd)$ queries via compressed sensing arguments. We also study robustness to noisy oracle access, proving that under mild norm and margin conditions, the parameters can be estimated to $\varepsilon$ accuracy with a polynomial number of queries even when outputs are only provided up to additive tolerance. Finally, we show that multi-head attention parameters are not identifiable from value queries in general -- distinct parameterisations can induce the same input-output map. Hence, guarantees analogous to the single-head setting are impossible without additional structural assumptions.
We propose a validation-free checkpointing signal from a single forward-backward pass: the Frobenius norm of the classifier-head gradient on one detached-feature batch, ||g||_F = ||dL/dW||_F. Across ImageNet-1k CNNs and Transformers, this proxy is strongly negative with Top-1 and positive with loss. Selecting the checkpoint with the minimum head gradient in a short tail window closes most of the gap to the oracle (4.24% +/- 2.00% with a universal setup, about 1.12% with light per-family tuning). For practical deployment, a head-scale normalization is more stable within classic CNN families (e.g., ResNets), while a feature-scale normalization works well for Transformers and modern CNNs. The same one-batch probe also predicts COCO detection/segmentation mAP. In diffusion (UNet/DDPM on CIFAR-10), it tracks progress and enables near-oracle tail-window selection; it is positively correlated with same-distribution probe MSE and negatively with FID (lower is better), so it can be used as a lightweight, label-free monitor. Validation labels are never used beyond reporting. The probe adds much less than 0.1% of an epoch and works as a drop-in for validation-free checkpoint selection and early stopping.
The ongoing global transition towards low-carbon energy has propelled the integration of offshore wind farms, which, when combined with Modular Multilevel Converter-based High-Voltage Direct Current (MMC-HVDC) transmission, present unique challenges for power system protection. In collector cables connecting wind turbines to offshore MMC, both ends are supplied by Inverter-Based Resources (IBRs), which modify the magnitude and characteristics of fault currents. In this context, this paper investigates the limitations of conventional differential protection schemes under such conditions and compares them with enhanced strategies that account for sequence components. Using electromagnetic transient simulations of a representative offshore wind farm modeled in PSCAD/EMTDC software, internal and external fault scenarios are assessed, varying fault types and resistances. The comparative evaluation provides insights into the sensitivity and selectivity of differential protection and guides a deeper conceptual understanding of the evolving protection challenges inherent to future converter-dominated grids.
The minimal norm weight perturbations of DNNs required to achieve a specified change in output are derived and the factors determining its size are discussed. These single-layer exact formulae are contrasted with more generic multi-layer Lipschitz constant based robustness guarantees; both are observed to be of the same order which indicates similar efficacy in their guarantees. These results are applied to precision-modification-activated backdoor attacks, establishing provable compression thresholds below which such attacks cannot succeed, and show empirically that low-rank compression can reliably activate latent backdoors while preserving full-precision accuracy. These expressions reveal how back-propagated margins govern layer-wise sensitivity and provide certifiable guarantees on the smallest parameter updates consistent with a desired output shift.
Code coverage is a valuable guide for testing, but in AAA games the overhead of instrumentation conflicts with strict performance requirements and can destabilize automated tests. We propose and assess a selective instrumentation approach tailored to large game engines written in \texttt{C++}, which reduces the scope of instrumentation while preserving relevant coverage data to developer commits. Our framework integrates into an industrial game testing pipeline, enabling developers to receive immediate coverage feedback on tests run against their changes. The compilation overhead of our approach is minimal, allowing instrumentation of over 2,000 commits before doubling build time. In performance evaluations, even the worst-case scenario maintains frame rates above 50\% of the non-instrumented baseline. Across two production test suites maintained by our industry partner, our framework caused no automated test failures, avoiding the instability observed under full instrumentation. Our work shows that commit-level or build-level coverage of large \texttt{C++} game engines can be achieved with minimal overhead and without compromising test stability.
Group recommender systems help users make collective choices but often lack transparency, leaving group members uncertain about why items are suggested. Existing explanation methods focus on individuals, offering limited support for groups where multiple preferences interact. In this paper, we propose a framework for group counterfactual explanations, which reveal how removing specific past interactions would change a group recommendation. We formalize this concept, introduce utility and fairness measures tailored to groups, and design heuristic algorithms, such as Pareto-based filtering and grow-and-prune strategies, for efficient explanation discovery. Experiments on MovieLens and Amazon datasets show clear trade-offs: low-cost methods produce larger, less fair explanations, while other approaches yield concise and balanced results at higher cost. Furthermore, the Pareto-filtering heuristic demonstrates significant efficiency improvements in sparse settings.
We study multigrade deep learning (MGDL) as a principled framework for structured error refinement in deep neural networks. While the approximation power of neural networks is now relatively well understood, training very deep architectures remains challenging due to highly non-convex and often ill-conditioned optimization landscapes. In contrast, for relatively shallow networks, most notably one-hidden-layer $\texttt{ReLU}$ models, training admits convex reformulations with global guarantees, motivating learning paradigms that improve stability while scaling to depth. MGDL builds upon this insight by training deep networks grade by grade: previously learned grades are frozen, and each new residual block is trained solely to reduce the remaining approximation error, yielding an interpretable and stable hierarchical refinement process. We develop an operator-theoretic foundation for MGDL and prove that, for any continuous target function, there exists a fixed-width multigrade $\texttt{ReLU}$ scheme whose residuals decrease strictly across grades and converge uniformly to zero. To the best of our knowledge, this work provides the first rigorous theoretical guarantee that grade-wise training yields provable vanishing approximation error in deep networks. Numerical experiments further illustrate the theoretical results.
Transformer-based general visual geometry frameworks have shown promising performance in camera pose estimation and 3D scene understanding. Recent advancements in Visual Geometry Grounded Transformer (VGGT) models have shown great promise in camera pose estimation and 3D reconstruction. However, these models typically rely on ground truth labels for training, posing challenges when adapting to unlabeled and unseen scenes. In this paper, we propose a self-supervised framework to train VGGT with unlabeled data, thereby enhancing its localization capability in large-scale environments. To achieve this, we extend conventional pair-wise relations to sequence-wise geometric constraints for self-supervised learning. Specifically, in each sequence, we sample multiple source frames and geometrically project them onto different target frames, which improves temporal feature consistency. We formulate physical photometric consistency and geometric constraints as a joint optimization loss to circumvent the requirement for hard labels. By training the model with this proposed method, not only the local and global cross-view attention layers but also the camera and depth heads can effectively capture the underlying multi-view geometry. Experiments demonstrate that the model converges within hundreds of iterations and achieves significant improvements in large-scale localization. Our code will be released at this https URL.
Knowledge Tracing (KT) aims to model a student's learning trajectory and predict performance on the next question. A key challenge is how to better represent the relationships among students, questions, and knowledge concepts (KCs). Recently, graph-based KT paradigms have shown promise for this problem. However, existing methods have not sufficiently explored inter-concept relations, often inferred solely from interaction sequences. In addition, the scale and heterogeneity of KT graphs make full-graph encoding both computationally both costly and noise-prone, causing attention to bleed into student-irrelevant regions and degrading the fidelity of inter-KC relations. To address these issues, we propose a novel framework: Multi-Agent Graph-Enhanced Knowledge Tracing (MAGE-KT). It constructs a multi-view heterogeneous graph by combining a multi-agent KC relation extractor and a student-question interaction graph, capturing complementary semantic and behavioral signals. Conditioned on the target student's history, it retrieves compact, high-value subgraphs and integrates them using an Asymmetric Cross-attention Fusion Module to enhance prediction while avoiding attention diffusion and irrelevant computation. Experiments on three widely used KT datasets show substantial improvements in KC-relation accuracy and clear gains in next-question prediction over existing methods.
Automated fact-checking (AFC) systems are susceptible to adversarial attacks, enabling false claims to evade detection. Existing adversarial frameworks typically rely on injecting noise or altering semantics, yet no existing framework exploits the adversarial potential of persuasion techniques, which are widely used in disinformation campaigns to manipulate audiences. In this paper, we introduce a novel class of persuasive adversarial attacks on AFCs by employing a generative LLM to rephrase claims using persuasion techniques. Considering 15 techniques grouped into 6 categories, we study the effects of persuasion on both claim verification and evidence retrieval using a decoupled evaluation strategy. Experiments on the FEVER and FEVEROUS benchmarks show that persuasion attacks can substantially degrade both verification performance and evidence retrieval. Our analysis identifies persuasion techniques as a potent class of adversarial attacks, highlighting the need for more robust AFC systems.
Surgery is a highly complex process, and artificial intelligence has emerged as a transformative force in supporting surgical guidance and decision-making. However, the unimodal nature of most current AI systems limits their ability to achieve a holistic understanding of surgical workflows. This highlights the need for general-purpose surgical AI systems capable of comprehensively modeling the interrelated components of surgical scenes. Recent advances in large vision-language models that integrate multimodal data processing offer strong potential for modeling surgical tasks and providing human-like scene reasoning and understanding. Despite their promise, systematic investigations of VLMs in surgical applications remain limited. In this study, we evaluate the effectiveness of large VLMs for the fundamental surgical vision task of detecting surgical tools. Specifically, we investigate three state-of-the-art VLMs, Qwen2.5, LLaVA1.5, and InternVL3.5, on the GraSP robotic surgery dataset under both zero-shot and parameter-efficient LoRA fine-tuning settings. Our results demonstrate that Qwen2.5 consistently achieves superior detection performance in both configurations among the evaluated VLMs. Furthermore, compared with the open-set detection baseline Grounding DINO, Qwen2.5 exhibits stronger zero-shot generalization and comparable fine-tuned performance. Notably, Qwen2.5 shows superior instrument recognition, while Grounding DINO demonstrates stronger localization.
In typical black-box optimization applications, the available computational budget is often allocated to a single algorithm, typically chosen based on user preference with limited knowledge about the problem at hand or according to some expert knowledge. However, we show that splitting the budget across several algorithms yield significantly better results. This approach benefits from both algorithm complementarity across diverse problems and variance reduction within individual functions, and shows that algorithm portfolios do NOT require parallel evaluation capabilities. To demonstrate the advantage of sequential algorithm portfolios, we apply it to the COCO data archive, using over 200 algorithms evaluated on the BBOB test suite. The proposed sequential portfolios consistently outperform single-algorithm baselines, achieving relative performance gains of over 14%, and offering new insights into restart mechanisms and potential for warm-started execution strategies.
We introduce FedSGM, a unified framework for federated constrained optimization that addresses four major challenges in federated learning (FL): functional constraints, communication bottlenecks, local updates, and partial client participation. Building on the switching gradient method, FedSGM provides projection-free, primal-only updates, avoiding expensive dual-variable tuning or inner solvers. To handle communication limits, FedSGM incorporates bi-directional error feedback, correcting the bias introduced by compression while explicitly understanding the interaction between compression noise and multi-step local updates. We derive convergence guarantees showing that the averaged iterate achieves the canonical $\boldsymbol{\mathcal{O}}(1/\sqrt{T})$ rate, with additional high-probability bounds that decouple optimization progress from sampling noise due to partial participation. Additionally, we introduce a soft switching version of FedSGM to stabilize updates near the feasibility boundary. To our knowledge, FedSGM is the first framework to unify functional constraints, compression, multiple local updates, and partial client participation, establishing a theoretically grounded foundation for constrained federated learning. Finally, we validate the theoretical guarantees of FedSGM via experimentation on Neyman-Pearson classification and constrained Markov decision process (CMDP) tasks.
Crop type maps from satellite remote sensing are important tools for food security, local livelihood support and climate change mitigation in smallholder regions of the world, but most satellite-based methods are not well suited to smallholder conditions. To address this gap, we establish a four-part criteria for a useful embedding-based approach consisting of 1) performance, 2) plausibility, 3) transferability and 4) accessibility and evaluate geospatial foundation model (FM) embeddings -based approaches using TESSERA and AlphaEarth against current baseline methods for a region in the groundnut basin of Senegal. We find that the TESSERA -based approach to land cover and crop type mapping fulfills the selection criteria best, and in one temporal transfer example shows 28% higher accuracy compared to the next best method. These results indicate that TESSERA embeddings are an effective approach for crop type classification and mapping tasks in Senegal.
Machine unlearning (MU) for large language models has become critical for AI safety, yet existing methods fail to generalize to Mixture-of-Experts (MoE) architectures. We identify that traditional unlearning methods exploit MoE's architectural vulnerability: they manipulate routers to redirect queries away from knowledgeable experts rather than erasing knowledge, causing a loss of model utility and superficial forgetting. We propose Geometric Routing Invariance Preservation (GRIP), an algorithm-agnostic framework for unlearning for MoE. Our core contribution is a geometric constraint, implemented by projecting router gradient updates into an expert-specific null-space. Crucially, this decouples routing stability from parameter rigidity: while discrete expert selections remain stable for retained knowledge, the continuous router parameters remain plastic within the null space, allowing the model to undergo necessary internal reconfiguration to satisfy unlearning objectives. This forces the unlearning optimization to erase knowledge directly from expert parameters rather than exploiting the superficial router manipulation shortcut. GRIP functions as an adapter, constraining router parameter updates without modifying the underlying unlearning algorithm. Extensive experiments on large-scale MoE models demonstrate that our adapter eliminates expert selection shift (achieving over 95% routing stability) across all tested unlearning methods while preserving their utility. By preventing existing algorithms from exploiting MoE model's router vulnerability, GRIP adapts existing unlearning research from dense architectures to MoEs.
The success of reinforcement learning (RL) is fundamentally tied to having a reward function that accurately reflects the task objective. Yet, designing reward functions is notoriously time-consuming and prone to misspecification. To address this issue, our first goal is to understand how to support RL practitioners in specifying appropriate weights for a reward function. We leverage the Trajectory Alignment Coefficient (TAC), a metric that evaluates how closely a reward function's induced preferences match those of a domain expert. To evaluate whether TAC provides effective support in practice, we conducted a human-subject study in which RL practitioners tuned reward weights for Lunar Lander. We found that providing TAC during reward tuning led participants to produce more performant reward functions and report lower cognitive workload relative to standard tuning without TAC. However, the study also underscored that manual reward design, even with TAC, remains labor-intensive. This limitation motivated our second goal: to learn a reward model that maximizes TAC directly. Specifically, we propose Soft-TAC, a differentiable approximation of TAC that can be used as a loss function to train reward models from human preference data. Validated in the racing simulator Gran Turismo 7, reward models trained using Soft-TAC successfully captured preference-specific objectives, resulting in policies with qualitatively more distinct behaviors than models trained with standard Cross-Entropy loss. This work demonstrates that TAC can serve as both a practical tool for guiding reward tuning and a reward learning objective in complex domains.
While raw cosine similarity in pretrained embedding spaces exhibits strong rank correlation with human judgments, anisotropy induces systematic miscalibration of absolute values: scores concentrate in a narrow high-similarity band regardless of actual semantic relatedness, limiting interpretability as a quantitative measure. Prior work addresses this by modifying the embedding space (whitening, contrastive fine tuning), but such transformations alter geometric structure and require recomputing all embeddings. Using isotonic regression trained on human similarity judgments, we construct a monotonic transformation that achieves near-perfect calibration while preserving rank correlation and local stability(98% across seven perturbation types). Our contribution is not to replace cosine similarity, but to restore interpretability of its absolute values through monotone calibration, without altering its ranking properties. We characterize isotonic calibration as an order-preserving reparameterization and prove that all order-based constructions (angular ordering, nearest neighbors, threshold graphs and quantile-based decisions) are invariant under this transformation.
This paper argues that AI-assisted peer review should be verification-first rather than review-mimicking. We propose truth-coupling, i.e. how tightly venue scores track latent scientific truth, as the right objective for review tools. We formalize two forces that drive a phase transition toward proxy-sovereign evaluation: verification pressure, when claims outpace verification capacity, and signal shrinkage, when real improvements become hard to separate from noise. In a minimal model that mixes occasional high-fidelity checks with frequent proxy judgment, we derive an explicit coupling law and an incentive-collapse condition under which rational effort shifts from truth-seeking to proxy optimization, even when current decisions still appear reliable. These results motivate actions for tool builders and program chairs: deploy AI as an adversarial auditor that generates auditable verification artifacts and expands effective verification bandwidth, rather than as a score predictor that amplifies claim inflation.
The problem of recovering planted community structure in random graphs has received a lot of attention in the literature on the stochastic block model, where the input is a random graph in which edges crossing between different communities appear with smaller probability than edges induced by communities. The communities themselves form a collection of vertex-disjoint sparse cuts in the expected graph, and can be recovered, often exactly, from a sample as long as a separation condition on the intra- and inter-community edge probabilities is satisfied. In this paper, we ask whether the presence of a large number of overlapping sparsest cuts in the expected graph still allows recovery. For example, the $d$-dimensional hypercube graph admits $d$ distinct (balanced) sparsest cuts, one for every coordinate. Can these cuts be identified given a random sample of the edges of the hypercube where each edge is present independently with some probability $p\in (0, 1)$? We show that this is the case, in a very strong sense: the sparsest balanced cut in a sample of the hypercube at rate $p=C\log d/d$ for a sufficiently large constant $C$ is $1/\text{poly}(d)$-close to a coordinate cut with high probability. This is asymptotically optimal and allows approximate recovery of all $d$ cuts simultaneously. Furthermore, for an appropriate sample of hypercube-like graphs recovery can be made exact. The proof is essentially a strong hypercube cut sparsification bound that combines a theorem of Friedgut, Kalai and Naor on boolean functions whose Fourier transform concentrates on the first level of the Fourier spectrum with Karger's cut counting argument.
We propose a new kind of localized shock capturing for continuous (CG) and discontinuous Galerkin (DG) discretizations of hyperbolic conservation laws. The underlying framework of dissipation-based weighted essentially nonoscillatory (WENO) stabilization for high-order CG and DG approximations was introduced in our previous work. In this general framework, Hermite WENO (HWENO) reconstructions are used to calculate local smoothness sensors that determine the appropriate amount of artificial viscosity for each cell. In the original version, candidate polynomials for WENO averaging are constructed using the derivative data from von Neumann neighbors. We upgrade this standard `cell-cell' reconstruction procedure by using WENO polynomials associated with mesh vertices as candidate polynomials for cell-based WENO averaging. The Hermite data of individual cells is sent to vertices of those cells, after which vertex-averaged HWENO data is sent back to cells containing the vertices. The new `cell-vertex' averaging procedure includes the data of vertex neighbors without explicitly adding them to the reconstruction stencils. It mitigates mesh imprinting and can also be used in classical HWENO limiters for DG methods. The second main novelty of the proposed approach is a quadrature-driven distribution of artificial viscosity within high-order finite elements. Replacing the linear quadrature weights by their nonlinear WENO-type counterparts, we concentrate shock-capturing dissipation near discontinuities while minimizing it in smooth portions of troubled cells. This redistribution of WENO stabilization preserves the total dissipation rate within each cell and improves local shock resolution without relying on subcell decomposition techniques. Numerical experiments in one and two dimensions demonstrate substantial improvements in accuracy and robustness for high-order elements.
Recent research in long-form video generation has shifted from bidirectional to autoregressive models, yet these methods commonly suffer from error accumulation and a loss of long-term coherence. While attention sink frames have been introduced to mitigate this performance decay, they often induce a critical failure mode we term sink-collapse: the generated content repeatedly reverts to the sink frame, resulting in abrupt scene resets and cyclic motion patterns. Our analysis reveals that sink-collapse originates from an inherent conflict between the periodic structure of Rotary Position Embedding (RoPE) and the multi-head attention mechanisms prevalent in current generative models. To address it, we propose a lightweight, training-free approach that effectively suppresses this behavior by introducing multi-head RoPE jitter that breaks inter-head attention homogenization and mitigates long-horizon collapse. Extensive experiments show that our method successfully alleviates sink-collapse while preserving generation quality. To the best of our knowledge, this work achieves the first demonstration of real-time, streaming, and infinite-length video generation with little quality decay. As an illustration of this robustness, we generate continuous videos up to 12 hours in length, which, to our knowledge, is among the longest publicly demonstrated results in streaming video generation.
The sample complexity of multi-group learning is shown to improve in the group-realizable setting over the agnostic setting, even when the family of groups is infinite so long as it has finite VC dimension. The improved sample complexity is obtained by empirical risk minimization over the class of group-realizable concepts, which itself could have infinite VC dimension. Implementing this approach is also shown to be computationally intractable, and an alternative approach is suggested based on improper learning.
We revisit the classic Maximum $k$-Coverage problem: Determine the largest number $t$ of elements that can be covered by choosing $k$ sets from a given family $\mathcal{F} = \{S_1,\dots, S_n\}$ of a size-$u$ universe. A notable special case is Partial $k$-Dominating Set, where one chooses $k$ vertices in a graph to maximize the number of dominated vertices. Extensive research has established strong hardness results for various aspects of Maximum $k$-Coverage, such as tight inapproximability results, $W[2]$-hardness, and a conditionally tight worst-case running time of $n^{k\pm o(1)}$. In this paper we ask: (1) Can this time bound be improved for small $t$, at least for Partial $k$-Dominating Set, ideally to time~$t^{k\pm O(1)}$? (2) More ambitiously, can we even determine the best-possible running time of Maximum $k$-Coverage with respect to the perhaps most natural parameters: the universe size $u$, the maximum set size $s$, and the maximum frequency $f$? We successfully resolve both questions. (1) We give an algorithm that solves Partial $k$-Dominating Set in time $O(nt + t^{\frac{2\omega}{3} k+O(1)})$ if $\omega \ge 2.25$ and time $O(nt+ t^{\frac{3}{2} k+O(1)})$ if $\omega \le 2.25$, where $\omega \le 2.372$ is the matrix multiplication exponent. From this we derive a time bound that is conditionally optimal, regardless of $\omega$, based on the well-established $k$-clique and 3-uniform hyperclique hypotheses from fine-grained complexity. We also obtain matching upper and lower bounds for sparse graphs. To address (2) we design an algorithm for Maximum $k$-Coverage running in time $$ \min \left\{ (f\cdot \min\{\sqrt[3]{u}, \sqrt{s}\})^k + \min\{n,f\cdot \min\{\sqrt{u}, s\}\}^{k\omega/3}, n^k\right\} \cdot g(k)n^{\pm O(1)}, $$ and, surprisingly, further show that this complicated time bound is also conditionally optimal.
The growing reliance on Artificial Intelligence (AI) models in high-stakes decision-making systems, particularly within emerging telecom and 6G applications, underscores the urgent need for transparent and standardized fairness assessment frameworks. While global toolkits such as IBM AI Fairness 360 and Microsoft Fairlearn have advanced bias detection, they often lack alignment with region-specific regulatory requirements and national priorities. To address this gap, we propose Nishpaksh, an indigenous fairness evaluation tool that operationalizes the Telecommunication Engineering Centre (TEC) Standard for the Evaluation and Rating of Artificial Intelligence Systems. Nishpaksh integrates survey-based risk quantification, contextual threshold determination, and quantitative fairness evaluation into a unified, web-based dashboard. The tool employs vectorized computation, reactive state management, and certification-ready reporting to enable reproducible, audit-grade assessments, thereby addressing a critical post-standardization implementation need. Experimental validation on the COMPAS dataset demonstrates Nishpaksh's effectiveness in identifying attribute-specific bias and generating standardized fairness scores compliant with the TEC framework. The system bridges the gap between research-oriented fairness methodologies and regulatory AI governance in India, marking a significant step toward responsible and auditable AI deployment within critical infrastructure like telecommunications.
Harm is invoked everywhere from cybersecurity, ethics, risk analysis, to adversarial AI, yet there exists no systematic or agreed upon list of harms, and the concept itself is rarely defined with the precision required for serious analysis. Current discourse relies on vague, under specified notions of harm, rendering nuanced, structured, and qualitative assessment effectively impossible. This paper challenges that gap directly. We introduce a structured and expandable taxonomy of harms, grounded in an ensemble of contemporary ethical theories, that makes harm explicit, enumerable, and analytically tractable. The proposed framework identifies 66+ distinct harm types, systematically organized into two overarching domains human and nonhuman, and eleven major categories, each explicitly aligned with eleven dominant ethical theories. While extensible by design, the upper levels are intentionally stable. Beyond classification, we introduce a theory-aware taxonomy of victim entities and formalize normative harm attributes, including reversibility and duration that materially alter ethical severity. Together, these contributions transform harm from a rhetorical placeholder into an operational object of analysis, enabling rigorous ethical reasoning and long term safety evaluation of AI systems and other sociotechnical domains where harm is a first order concern.
While most prior work in video generation relies on bidirectional architectures, recent efforts have sought to adapt these models into autoregressive variants to support near real-time generation. However, such adaptations often depend heavily on teacher models, which can limit performance, particularly in the absence of a strong autoregressive teacher, resulting in output quality that typically lags behind their bidirectional counterparts. In this paper, we explore an alternative approach that uses reward signals to guide the generation process, enabling more efficient and scalable autoregressive generation. By using reward signals to guide the model, our method simplifies training while preserving high visual fidelity and temporal consistency. Through extensive experiments on standard benchmarks, we find that our approach performs comparably to existing autoregressive models and, in some cases, surpasses similarly sized bidirectional models by avoiding constraints imposed by teacher architectures. For example, on VBench, our method achieves a total score of 84.92, closely matching state-of-the-art autoregressive methods that score 84.31 but require significant heterogeneous distillation.
To be discoverable in an embedding-based search process, each part of a document should be reflected in its embedding representation. To quantify any potential reflection biases, we introduce a permutation-based evaluation framework. With this, we observe that state-of-the-art embedding models exhibit systematic positional and language biases when documents are longer and consist of multiple segments. Specifically, early segments and segments in higher-resource languages like English are over-represented, while later segments and segments in lower-resource languages are marginalized. In our further analysis, we find that the positional bias stems from front-loaded attention distributions in pooling-token embeddings, where early tokens receive more attention. To mitigate this issue, we introduce an inference-time attention calibration method that redistributes attention more evenly across document positions, increasing discoverabiltiy of later segments. Our evaluation framework and attention calibration is available at this https URL
Energy-harvesting (EH) Internet of Things (IoT) devices operate under intermittent energy availability, which disrupts task execution and makes energy-intensive over-the-air (OTA) updates particularly challenging. Conventional OTA update mechanisms rely on reboots and incur significant overhead, rendering them unsuitable for intermittently powered systems. Recent live OTA update techniques reduce reboot overhead but still lack mechanisms to ensure consistency when updates interact with runtime execution. This paper presents AERO, an Adaptive and Efficient Runtime-Aware OTA update mechanism that integrates update tasks into the device's Directed Acyclic Graph (DAG) and schedules them alongside routine tasks under energy and timing constraints. By identifying update-affected execution regions and dynamically adjusting dependencies, AERO ensures consistent up date integration while adapting to intermittent energy availability. Experiments on representative workloads demonstrate improved update reliability and efficiency compared to existing live update approaches.
In resource-constrained and low-latency settings, uncertainty estimates must be efficiently obtained. Deep Ensembles provide robust epistemic uncertainty (EU) but require training multiple full-size models. BatchEnsemble aims to deliver ensemble-like EU at far lower parameter and memory cost by applying learned rank-1 perturbations to a shared base network. We show that BatchEnsemble not only underperforms Deep Ensembles but closely tracks a single model baseline in terms of accuracy, calibration and out-of-distribution (OOD) detection on CIFAR10/10C/SVHN. A controlled study on MNIST finds members are near-identical in function and parameter space, indicating limited capacity to realize distinct predictive modes. Thus, BatchEnsemble behaves more like a single model than a true ensemble.
Large language models (LLMs) are increasingly used for text analysis tasks, such as named entity recognition or error detection. Unlike encoder-based models, however, generative architectures lack an explicit mechanism to refer to specific parts of their input. This leads to a variety of ad-hoc prompting strategies for span labeling, often with inconsistent results. In this paper, we categorize these strategies into three families: tagging the input text, indexing numerical positions of spans, and matching span content. To address the limitations of content matching, we introduce LogitMatch, a new constrained decoding method that forces the model's output to align with valid input spans. We evaluate all methods across four diverse tasks. We find that while tagging remains a robust baseline, LogitMatch improves upon competitive matching-based methods by eliminating span matching issues and outperforms other strategies in some setups.
Cloud-based Virtual Reality (VR) streaming presents significant challenges for 802.11 networks due to its high throughput and low latency requirements. When multiple VR users share a Wi-Fi network, the resulting uplink and downlink traffic can quickly saturate the channel. This paper investigates the capacity of 802.11 networks for supporting realistic VR streaming workloads across varying frame rates, bitrates, codec settings, and numbers of users. We develop an emulation framework that reproduces Air Light VR (ALVR) operation, where real HEVC video traffic is fed into an 802.11 simulation model. Our findings explore Wi-Fi's performance anomaly and demonstrate that Intra-refresh (IR) coding effectively reduces latency variability and improves QoS, supporting up to 4 concurrent VR users with Constant Bitrate (CBR) 100 Mbps before the channel is saturated.
Deep learning has shown remarkable progress in medical image semantic segmentation, yet its success heavily depends on large-scale expert annotations and consistent data distributions. In practice, annotations are scarce, and images are collected from multiple scanners or centers, leading to mixed-domain settings with unknown domain labels and severe domain gaps. Existing semi-supervised or domain adaptation approaches typically assume either a single domain shift or access to explicit domain indices, which rarely hold in real-world deployment. In this paper, we propose a domain-invariant mixed-domain semi-supervised segmentation framework that jointly enhances data diversity and mitigates domain bias. A Copy-Paste Mechanism (CPM) augments the training set by transferring informative regions across domains, while a Cluster Maximum Mean Discrepancy (CMMD) block clusters unlabeled features and aligns them with labeled anchors via an MMD objective, encouraging domain-invariant representations. Integrated within a teacher-student framework, our method achieves robust and precise segmentation even with very few labeled examples and multiple unknown domain discrepancies. Experiments on Fundus and M&Ms benchmarks demonstrate that our approach consistently surpasses semi-supervised and domain adaptation methods, establishing a potential solution for mixed-domain semi-supervised medical image segmentation.
Three-dimensional molecular structure generation is typically performed at the level of individual atoms, yet molecular graph generation techniques often consider fragments as their structural units. Building on the advances in frame-based protein structure generation, we extend these fragmentation ideas to 3D, treating general molecules as sets of rigid-body motifs. Utilising this representation, we employ SE(3)-equivariant generative modelling for de novo 3D molecule generation from rigid motifs. In our evaluations, we observe comparable or superior results to state-of-the-art across benchmarks, surpassing it in atom stability on GEOM-Drugs, while yielding a 2x to 10x reduction in generation steps and offering 3.5x compression in molecular representations compared to the standard atom-based methods.
The rapid growth of Large Transformer-based models, specifically Large Language Models (LLMs), now scaling to trillions of parameters, has necessitated training across thousands of GPUs using complex hybrid parallelism strategies (e.g., data, tensor, and pipeline parallelism). Checkpointing this massive, distributed state is critical for a wide range of use cases, such as resilience, suspend-resume, investigating undesirable training trajectories, and explaining model evolution. However, existing checkpointing solutions typically treat model state as opaque binary blobs, ignoring the ``3D heterogeneity'' of the underlying data structures--varying by memory location (GPU vs. Host), number of ``logical'' objects sharded and split across multiple files, data types (tensors vs. Python objects), and their serialization requirements. This results in significant runtime overheads due to blocking device-to-host transfers, data-oblivious serialization, and storage I/O contention. In this paper, we introduce DataStates-LLM, a novel checkpointing architecture that leverages State Providers to decouple state abstraction from data movement. DataStates-LLM exploits the immutability of model parameters during the forward and backward passes to perform ``lazy'', non-blocking asynchronous snapshots. By introducing State Providers, we efficiently coalesce fragmented, heterogeneous shards and overlap the serialization of metadata with bulk tensor I/O. We evaluate DataStates-LLM on models up to 70B parameters on 256 A100-40GB GPUs. Our results demonstrate that DataStates-LLM achieves up to 4$\times$ higher checkpointing throughput and reduces end-to-end training time by up to 2.2$\times$ compared to state-of-the-art solutions, effectively mitigating the serialization and heterogeneity bottlenecks in extreme-scale LLM training.
Trust and reliance are often treated as coupled constructs in human-AI interaction research, with the assumption that calibrating trust will lead to appropriate reliance. We challenge this assumption in educational contexts, where students increasingly turn to AI for learning support. Through semi-structured interviews with graduate students (N=8) comparing AI-generated and human-generated responses, we find a systematic dissociation: students exhibit high trust but low reliance on human experts due to social barriers (fear of judgment, help-seeking anxiety), while showing low trust but high reliance on AI systems due to social affordances (accessibility, anonymity, judgment-free interaction). Using Mutual Theory of Mind as an analytical lens, we demonstrate that trust is shaped by epistemic evaluations while reliance is driven by social factors -- and these may operate independently.
The rapid advancement of large language models (LLMs) has sparked growing interest in their integration into autonomous systems for reasoning-driven perception, planning, and decision-making. However, evaluating and training such agentic AI models remains challenging due to the lack of large-scale, structured, and safety-critical benchmarks. This paper introduces AgentDrive, an open benchmark dataset containing 300,000 LLM-generated driving scenarios designed for training, fine-tuning, and evaluating autonomous agents under diverse conditions. AgentDrive formalizes a factorized scenario space across seven orthogonal axes: scenario type, driver behavior, environment, road layout, objective, difficulty, and traffic density. An LLM-driven prompt-to-JSON pipeline generates semantically rich, simulation-ready specifications that are validated against physical and schema constraints. Each scenario undergoes simulation rollouts, surrogate safety metric computation, and rule-based outcome labeling. To complement simulation-based evaluation, we introduce AgentDrive-MCQ, a 100,000-question multiple-choice benchmark spanning five reasoning dimensions: physics, policy, hybrid, scenario, and comparative reasoning. We conduct a large-scale evaluation of fifty leading LLMs on AgentDrive-MCQ. Results show that while proprietary frontier models perform best in contextual and policy reasoning, advanced open models are rapidly closing the gap in structured and physics-grounded reasoning. We release the AgentDrive dataset, AgentDrive-MCQ benchmark, evaluation code, and related materials at this https URL
Geospatial reasoning is essential for real-world applications such as urban analytics, transportation planning, and disaster response. However, existing LLM-based agents often fail at genuine geospatial computation, relying instead on web search or pattern matching while hallucinating spatial relationships. We present Spatial-Agent, an AI agent grounded in foundational theories of spatial information science. Our approach formalizes geo-analytical question answering as a concept transformation problem, where natural-language questions are parsed into executable workflows represented as GeoFlow Graphs -- directed acyclic graphs with nodes corresponding to spatial concepts and edges representing transformations. Drawing on spatial information theory, Spatial-Agent extracts spatial concepts, assigns functional roles with principled ordering constraints, and composes transformation sequences through template-based generation. Extensive experiments on MapEval-API and MapQA benchmarks demonstrate that Spatial-Agent significantly outperforms existing baselines including ReAct and Reflexion, while producing interpretable and executable geospatial workflows.
In low- and middle-income countries (LMICs), a significant proportion of medical diagnostic equipment remains underutilized or non-functional due to a lack of timely maintenance, limited access to technical expertise, and minimal support from manufacturers, particularly for devices acquired through third-party vendors or donations. This challenge contributes to increased equipment downtime, delayed diagnoses, and compromised patient care. This research explores the development and validation of an AI-powered support platform designed to assist biomedical technicians in diagnosing and repairing medical devices in real-time. The system integrates a large language model (LLM) with a user-friendly web interface, enabling imaging technologists/radiographers and biomedical technicians to input error codes or device symptoms and receive accurate, step-by-step troubleshooting guidance. The platform also includes a global peer-to-peer discussion forum to support knowledge exchange and provide additional context for rare or undocumented issues. A proof of concept was developed using the Philips HDI 5000 ultrasound machine, achieving 100% precision in error code interpretation and 80% accuracy in suggesting corrective actions. This study demonstrates the feasibility and potential of AI-driven systems to support medical device maintenance, with the aim of reducing equipment downtime to improve healthcare delivery in resource-constrained environments.
Masked diffusion models (MDMs) have emerged as a promising approach for language modeling, yet they face a performance gap compared to autoregressive models (ARMs) and require more training iterations. In this work, we present the Auto-Regressive Masked Diffusion (ARMD) model, an architecture designed to close this gap by unifying the training efficiency of autoregressive models with the parallel generation capabilities of diffusion-based models. Our key insight is to reframe the masked diffusion process as a block-wise causal model. This perspective allows us to design a strictly causal, permutation-equivariant architecture that computes all conditional probabilities across multiple denoising steps in a single, parallel forward pass. The resulting architecture supports efficient, autoregressive-style decoding and a progressive permutation training scheme, allowing the model to learn both canonical left-to-right and random token orderings. Leveraging this flexibility, we introduce a novel strided parallel generation strategy that accelerates inference by generating tokens in parallel streams while maintaining global coherence. Empirical results demonstrate that ARMD achieves state-of-the-art performance on standard language modeling benchmarks, outperforming established diffusion baselines while requiring significantly fewer training steps. Furthermore, it establishes a new benchmark for parallel text generation, effectively bridging the performance gap between parallel and sequential decoding.
Modern Vision-Language Models (VLMs) remain poorly characterized in multi-step visual interactions, particularly in how they integrate perception, memory, and action over long horizons. We introduce VisGym, a gymnasium of 17 environments for evaluating and training VLMs. The suite spans symbolic puzzles, real-image understanding, navigation, and manipulation, and provides flexible controls over difficulty, input representation, planning horizon, and feedback. We also provide multi-step solvers that generate structured demonstrations, enabling supervised finetuning. Our evaluations show that all frontier models struggle in interactive settings, achieving low success rates in both the easy (46.6%) and hard (26.0%) configurations. Our experiments reveal notable limitations: models struggle to effectively leverage long context, performing worse with an unbounded history than with truncated windows. Furthermore, we find that several text-based symbolic tasks become substantially harder once rendered visually. However, explicit goal observations, textual feedback, and exploratory demonstrations in partially observable or unknown-dynamics settings for supervised finetuning yield consistent gains, highlighting concrete failure modes and pathways for improving multi-step visual decision-making. Code, data, and models can be found at: this https URL.
Intrusion Detection Systems (IDSs) are a key component for protecting Internet of Things (IoT) environments. However, in Machine Learning-based (ML-based) IDSs, performance is often degraded by the strong class imbalance between benign and attack traffic. Although data augmentation has been widely explored to mitigate this issue, existing approaches typically rely on simple oversampling techniques or generative models that struggle to simultaneously achieve high sample fidelity, diversity, and computational efficiency. To address these limitations, we propose the use of a Latent Diffusion Model (LDM) for attack data augmentation in IoT intrusion detection and provide a comprehensive comparison against state-of-the-art baselines. Experiments were conducted on three representative IoT attack types, specifically Distributed Denial-of-Service (DDoS), Mirai, and Man-in-the-Middle, evaluating both downstream IDS performance and intrinsic generative quality using distributional, dependency-based, and diversity metrics. Results show that balancing the training data with LDM-generated samples substantially improves IDS performance, achieving F1-scores of up to 0.99 for DDoS and Mirai attacks and consistently outperforming competing methods. Additionally, quantitative and qualitative analyses demonstrate that LDMs effectively preserve feature dependencies while generating diverse samples and reduce sampling time by approximately 25\% compared to diffusion models operating directly in data space. These findings highlight latent diffusion as an effective and scalable solution for synthetic IoT attack data generation, substantially mitigating the impact of class imbalance in ML-based IDSs for IoT scenarios.
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($\lambda_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($\lambda_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $\Delta \mathbf{\theta}$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($\lambda_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
We present SyncLight, the first method to enable consistent, parametric relighting across multiple uncalibrated views of a static scene. While single-view relighting has advanced significantly, existing generative approaches struggle to maintain the rigorous lighting consistency essential for multi-camera broadcasts, stereoscopic cinema, and virtual production. SyncLight addresses this by enabling precise control over light intensity and color across a multi-view capture of a scene, conditioned on a single reference edit. Our method leverages a multi-view diffusion transformer trained using a latent bridge matching formulation, achieving high-fidelity relighting of the entire image set in a single inference step. To facilitate training, we introduce a large-scale hybrid dataset comprising diverse synthetic environments -- curated from existing sources and newly designed scenes -- alongside high-fidelity, real-world multi-view captures under calibrated illumination. Surprisingly, though trained only on image pairs, SyncLight generalizes zero-shot to an arbitrary number of viewpoints, effectively propagating lighting changes across all views, without requiring camera pose information. SyncLight enables practical relighting workflows for multi-view capture systems.
Modern generative video models excel at producing convincing, high-quality outputs, but struggle to maintain multi-view and spatiotemporal consistency in highly dynamic real-world environments. In this work, we introduce \textbf{AnyView}, a diffusion-based video generation framework for \emph{dynamic view synthesis} with minimal inductive biases or geometric assumptions. We leverage multiple data sources with various levels of supervision, including monocular (2D), multi-view static (3D) and multi-view dynamic (4D) datasets, to train a generalist spatiotemporal implicit representation capable of producing zero-shot novel videos from arbitrary camera locations and trajectories. We evaluate AnyView on standard benchmarks, showing competitive results with the current state of the art, and propose \textbf{AnyViewBench}, a challenging new benchmark tailored towards \emph{extreme} dynamic view synthesis in diverse real-world scenarios. In this more dramatic setting, we find that most baselines drastically degrade in performance, as they require significant overlap between viewpoints, while AnyView maintains the ability to produce realistic, plausible, and spatiotemporally consistent videos when prompted from \emph{any} viewpoint. Results, data, code, and models can be viewed at: this https URL
Perturbation screens hold the potential to systematically map regulatory processes at single-cell resolution, yet modeling and predicting transcriptome-wide responses to perturbations remains a major computational challenge. Existing methods often underperform simple baselines, fail to disentangle measurement noise from biological signal, and provide limited insight into the causal structure governing cellular responses. Here, we present the latent causal diffusion (LCD), a generative model that frames single-cell gene expression as a stationary diffusion process observed under measurement noise. LCD outperforms established approaches in predicting the distributional shifts of unseen perturbation combinations in single-cell RNA-sequencing screens while simultaneously learning a mechanistic dynamical system of gene regulation. To interpret these learned dynamics, we develop an approach we call causal linearization via perturbation responses (CLIPR), which yields an approximation of the direct causal effects between all genes modeled by the diffusion. CLIPR provably identifies causal effects under a linear drift assumption and recovers causal structure in both simulated systems and a genome-wide perturbation screen, where it clusters genes into coherent functional modules and resolves causal relationships that standard differential expression analysis cannot. The LCD-CLIPR framework bridges generative modeling with causal inference to predict unseen perturbation effects and map the underlying regulatory mechanisms of the transcriptome.
Empathetic speech dialogue requires not only understanding linguistic content but also perceiving rich paralinguistic information such as prosody, tone, and emotional intensity for affective understandings. Existing speech-to-speech large language models either rely on ASR transcription or use encoders to extract latent representations, often weakening affective information and contextual coherence in multi-turn dialogues. To address this, we propose \textbf{ES4R}, a framework for speech-based empathetic response generation. Our core innovation lies in explicitly modeling structured affective context before speech encoding, rather than relying on implicit learning by the encoder or explicit emotion supervision. Specifically, we introduce a dual-level attention mechanism to capture turn-level affective states and dialogue-level affective dynamics. The resulting affective representations are then integrated with textual semantics through speech-guided cross-modal attention to generate empathetic responses. For speech output, we employ energy-based strategy selection and style fusion to achieve empathetic speech synthesis. ES4R consistently outperforms strong baselines in both automatic and human evaluations and remains robust across different LLM backbones.
We present the first empirical derivation of a continuous-time stochastic model for real-world opinion dynamics. Using longitudinal social-media data to infer users opinion on a binary climate-change topic, we reconstruct the underlying drift and diffusion functions governing individual opinion updates. We show that the observed dynamics are well described by a Langevin-type stochastic differential equation, with persistent attractor basins and spatially sensitive drift and diffusion terms. The empirically inferred one-step transition probabilities closely reproduce the transition kernel generated from the D-MODD model we introduce. Our results provide the first direct evidence that online opinion dynamics on a polarized topic admit a Markovian description at the operator level, with empirically reconstructed transition kernels accurately reproduced by a data-driven Langevin model, bridging sociophysics, behavioral data, and complex-systems modeling.
An accurate assessment of L2 English pronunciation is crucial for language learning, as it provides personalized feedback and ensures a fair evaluation of individual progress. However, automated scoring remains challenging due to the complexity of sentence-level fluency, prosody, and completeness. This paper evaluates the zero-shot performance of Qwen2-Audio-7B-Instruct, an instruction-tuned speech-LLM, on 5,000 Speechocean762 utterances. The model generates rubric-aligned scores for accuracy, fluency, prosody, and completeness, showing strong agreement with human ratings within +-2 tolerance, especially for high-quality speech. However, it tends to overpredict low-quality speech scores and lacks precision in error detection. These findings demonstrate the strong potential of speech LLMs in scalable pronunciation assessment and suggest future improvements through enhanced prompting, calibration, and phonetic integration to advance Computer-Assisted Pronunciation Training.
The practical utility of Speech Emotion Recognition (SER) systems is undermined by their fragility to domain shifts, such as speaker variability, the distinction between acted and naturalistic emotions, and cross-corpus variations. While domain adaptation and fine-tuning are widely studied, they require either source data or labelled target data, which are often unavailable or raise privacy concerns in SER. Test-time adaptation (TTA) bridges this gap by adapting models at inference using only unlabeled target data. Yet, having been predominantly designed for image classification and speech recognition, the efficacy of TTA for mitigating the unique domain shifts in SER has not been investigated. In this paper, we present the first systematic evaluation and comparison covering 11 TTA methods across three representative SER tasks. The results indicate that backpropagation-free TTA methods are the most promising. Conversely, entropy minimization and pseudo-labeling generally fail, as their core assumption of a single, confident ground-truth label is incompatible with the inherent ambiguity of emotional expression. Further, no single method universally excels, and its effectiveness is highly dependent on the distributional shifts and tasks.
We study a general framework of distributional computational graphs: computational graphs whose inputs are probability distributions rather than point values. We analyze the discretization error that arises when these graphs are evaluated using finite approximations of continuous probability distributions. Such an approximation might be the result of representing a continuous real-valued distribution using a discrete representation or from constructing an empirical distribution from samples (or might be the output of another distributional computational graph). We establish non-asymptotic error bounds in terms of the Wasserstein-1 distance, without imposing structural assumptions on the computational graph.
It is known that every real orthogonal matrix can be brought into the domain of the Cayley transform by multiplication with a suitable diagonal signature matrix. In this paper we provide a constructive and numerically efficient algorithm that, given a real orthogonal matrix $U$, computes a diagonal matrix $D$ with entries in $\{\pm1\}$ such that the Cayley transform of $DU$ is well defined. This yields a representation of $U$ in the form \[ U = D(I-S)(I+S)^{-1}, \] where $S$ is a skew-symmetric matrix. The proposed algorithm requires $O(n^{3})$ arithmetic operations and produces an explicit quantitative bound on the associated skew-symmetric generator. As an application, we show how this construction can be used to control singularities in Cayley-transform-based optimization methods on the orthogonal group.
Active learning for photonic crystals explores the integration of analytic approximate Bayesian last layer neural networks (LL-BNNs) with uncertainty-driven sample selection to accelerate photonic band gap prediction. We employ an analytic LL-BNN formulation, corresponding to the infinite Monte Carlo sample limit, to obtain uncertainty estimates that are strongly correlated with the true predictive error on unlabeled candidate structures. These uncertainty scores drive an active learning strategy that prioritizes the most informative simulations during training. Applied to the task of predicting band gap sizes in two-dimensional, two-tone photonic crystals, our approach achieves up to a 2.6x reduction in required training data compared to a random sampling baseline while maintaining predictive accuracy. The efficiency gains arise from concentrating computational resources on high uncertainty regions of the design space rather than sampling uniformly. Given the substantial cost of full band structure simulations, especially in three dimensions, this data efficiency enables rapid and scalable surrogate modeling. Our results suggest that analytic LL-BNN based active learning can substantially accelerate topological optimization and inverse design workflows for photonic crystals, and more broadly, offers a general framework for data efficient regression across scientific machine learning domains.
The maximization of reach-avoid probabilities for stochastic systems is a central topic in the control literature. Yet, the available methods are either restricted to low-dimensional systems or suffer from conservative approximations. To address these limitations, we propose control architectures that combine the flexibility of Markov Decision Processes with the scalability of Model Predictive Controllers. The Model Predictive Controller tracks reference signals while remaining agnostic to the stochasticity and reach-avoid objective. Instead, the reach-avoid probability is maximized by optimally updating the controller's reference online. To achieve this, the closed-loop system, consisting of the system and Model Predictive Controller, is abstracted as a Markov Decision Process in which a new reference can be chosen at every time-step. A feedback policy generating optimal references is then computed via Dynamic Programming. If the state space of the system is continuous, the Dynamic Programming algorithm must be executed on a finite system approximation. Modifications to the Model Predictive Controller enable a computationally efficient robustification of the Dynamic Programming algorithm to approximation errors, preserving bounds on the achieved reach-avoid probability. The approach is validated on a perturbed 12D quadcopter model in cluttered reach-avoid environments proving its flexibility and scalability.
We introduce an efficient few-shot keyword spotting model for edge devices, EdgeSpot, that pairs an optimized version of a BC-ResNet-based acoustic backbone with a trainable Per-Channel Energy Normalization frontend and lightweight temporal self-attention. Knowledge distillation is utilized during training by employing a self-supervised teacher model, optimized with Sub-center ArcFace loss. This study demonstrates that the EdgeSpot model consistently provides better accuracy at a fixed false-alarm rate (FAR) than strong BC-ResNet baselines. The largest variant, EdgeSpot-4, improves the 10-shot accuracy at 1% FAR from 73.7% to 82.0%, which requires only 29.4M MACs with 128k parameters.
We introduce a generalized Fourier ratio, the \(\ell^1/\ell^2\) norm ratio of coefficients in an \emph{arbitrary} orthonormal system, as a single, basis-invariant measure of \emph{effective dimension} that governs fundamental limits across signal recovery, localization, and learning. First, we prove that functions with small Fourier ratio can be stably recovered from random missing samples via \(\ell^1\) minimization, extending and clarifying compressed sensing guarantees for general bounded orthonormal systems. Second, we establish a sharp \emph{localization obstruction}: any attempt to localize recovery to subslices of a product space necessarily inflates the Fourier ratio by a factor scaling with the square root of the slice count, demonstrating that global complexity cannot be distributed locally. Finally, we show that the same parameter controls key complexity-theoretic measures: it provides explicit upper bounds on Kolmogorov rate-distortion description length and on the statistical query (SQ) dimension of the associated function class. These results unify analytic, algorithmic, and learning-theoretic constraints under a single complexity parameter, revealing the Fourier ratio as a fundamental invariant in information-theoretic signal processing.
Weather conditions can drastically alter the state of crops and rangelands, and in turn, impact the incomes and food security of individuals worldwide. Satellite-based remote sensing offers an effective way to monitor vegetation and climate variables on regional and global scales. The annual peak Normalized Difference Vegetation Index (NDVI), derived from satellite observations, is closely associated with crop development, rangeland biomass, and vegetation growth. Although various machine learning methods have been developed to forecast NDVI over short time ranges, such as one-month-ahead predictions, long-term forecasting approaches, such as one-year-ahead predictions of vegetation conditions, are not yet available. To fill this gap, we develop a two-phase machine learning model to forecast the one-year-ahead peak NDVI over high-resolution grids, using the Four Corners region of the Southwestern United States as a testbed. In phase one, we identify informative climate attributes, including precipitation and maximum vapor pressure deficit, and develop the generalized parallel Gaussian process that captures the relationship between climate attributes and NDVI. In phase two, we forecast these climate attributes using historical data at least one year before the NDVI prediction month, which then serve as inputs to forecast the peak NDVI at each spatial grid. We developed open-source tools that outperform alternative methods for both gross NDVI and grid-based NDVI one-year forecasts, providing information that can help farmers and ranchers make actionable plans a year in advance.
The development of robust, multilingual speaker recognition systems is hindered by a lack of large-scale, publicly available and multilingual datasets, particularly for the read-speech style crucial for applications like anti-spoofing. To address this gap, we introduce the TidyVoice dataset derived from the Mozilla Common Voice corpus after mitigating its inherent speaker heterogeneity within the provided client IDs. TidyVoice currently contains training and test data from over 212,000 monolingual speakers (Tidy-M) and around 4,500 multilingual speakers (Tidy-X) from which we derive two distinct conditions. The Tidy-M condition contains target and non-target trials from monolingual speakers across 81 languages. The Tidy-X condition contains target and non-target trials from multilingual speakers in both same- and cross-language trials. We employ two architectures of ResNet models, achieving a 0.35% EER by fine-tuning on our comprehensive Tidy-M partition. Moreover, we show that this fine-tuning enhances the model's generalization, improving performance on unseen conversational interview data from the CANDOR corpus. The complete dataset, evaluation trials, and our models are publicly released to provide a new resource for the community.
A desirable property of any deployed artificial intelligence is generalization across domains, i.e. data generation distribution under a specific acquisition condition. In medical imagining applications the most coveted property for effective deployment is Single Domain Generalization (SDG), which addresses the challenge of training a model on a single domain to ensure it generalizes well to unseen target domains. In multi-center studies, differences in scanners and imaging protocols introduce domain shifts that exacerbate variability in rare class characteristics. This paper presents our experience on SDG in real life deployment for two exemplary medical imaging case studies on seizure onset zone detection using fMRI data, and stress electrocardiogram based coronary artery detection. Utilizing the commonly used application of diabetic retinopathy, we first demonstrate that state-of-the-art SDG techniques fail to achieve generalized performance across data domains. We then develop a generic expert knowledge integrated deep learning technique DL+EKE and instantiate it for the DR application and show that DL+EKE outperforms SOTA SDG methods on DR. We then deploy instances of DL+EKE technique on the two real world examples of stress ECG and resting state (rs)-fMRI and discuss issues faced with SDG techniques.
While 3D foundational models have shown promise for promptable segmentation of medical volumes, their robustness to imprecise prompts remains under-explored. In this work, we aim to address this gap by systematically studying the effect of various controlled perturbations of dense visual prompts, that closely mimic real-world imprecision. By conducting experiments with two recent foundational models on a multi-organ abdominal segmentation task, we reveal several facets of promptable medical segmentation, especially pertaining to reliance on visual shape and spatial cues, and the extent of resilience of models towards certain perturbations. Codes are available at: this https URL
Exact recovery in stochastic block models (SBMs) is well understood in undirected settings, but remains considerably less developed for directed and sparse networks, particularly when the number of communities diverges. Spectral methods for directed SBMs often lack stability in asymmetric, low-degree regimes, and existing non-spectral approaches focus primarily on undirected or dense settings. We propose a fully non-spectral, two-stage procedure for community detection in sparse directed SBMs with potentially growing numbers of communities. The method first estimates the directed probability matrix using a neighborhood-smoothing scheme tailored to the asymmetric setting, and then applies $K$-means clustering to the estimated rows, thereby avoiding the limitations of eigen- or singular value decompositions in sparse, asymmetric networks. Our main theoretical contribution is a uniform row-wise concentration bound for the smoothed estimator, obtained through new arguments that control asymmetric neighborhoods and separate in- and out-degree effects. These results imply the exact recovery of all community labels with probability tending to one, under mild sparsity and separation conditions that allow both $\gamma_n \to 0$ and $K_n \to \infty$. Simulation studies, including highly directed, sparse, and non-symmetric block structures, demonstrate that the proposed procedure performs reliably in regimes where directed spectral and score-based methods deteriorate. To the best of our knowledge, this provides the first exact recovery guarantee for this class of non-spectral, neighborhood-smoothing methods in the sparse, directed setting.
Auditory attention decoding (AAD) identifies the attended speech stream in multi-speaker environments by decoding brain signals such as electroencephalography (EEG). This technology is essential for realizing smart hearing aids that address the cocktail party problem and for facilitating objective audiometry systems. Existing AAD research mainly utilizes dichotic environments where different speech signals are presented to the left and right ears, enabling models to classify directional attention rather than speech content. However, this spatial reliance limits applicability to real-world scenarios, such as the "cocktail party" situation, where speakers overlap or move dynamically. To address this challenge, we propose an AAD framework for diotic environments where identical speech mixtures are presented to both ears, eliminating spatial cues. Our approach maps EEG and speech signals into a shared latent space using independent encoders. We extract speech features using wav2vec 2.0 and encode them with a 2-layer 1D convolutional neural network (CNN), while employing the BrainNetwork architecture for EEG encoding. The model identifies the attended speech by calculating the cosine similarity between EEG and speech representations. We evaluate our method on a diotic EEG dataset and achieve 72.70% accuracy, which is 22.58% higher than the state-of-the-art direction-based AAD method.
Low-complexity multiple-input multiple-output (MIMO) detection remains a key challenge in modern wireless systems, particularly for 5G reduced capability (RedCap) and internet-of-things (IoT) devices. In this context, the growing interest in deploying machine learning on edge devices must be balanced against stringent constraints on computational complexity and memory while supporting high-order modulation. Beyond accurate hard detection, reliable soft information is equally critical, as modern receivers rely on soft-input channel decoding, imposing additional requirements on the detector design. In this work, we propose recurSIC, a lightweight learning-based MIMO detection framework that is structurally inspired by successive interference cancellation (SIC) and incorporates learned processing stages. It generates reliable soft information via multi-path hypothesis tracking with a tunable complexity parameter while requiring only a single forward pass and a minimal parameter count. Numerical results in realistic wireless scenarios show that recurSIC achieves strong hard- and soft-detection performance at very low complexity, making it well suited for edge-constrained MIMO receivers.
Learning a stationary diffusion amounts to estimating the parameters of a stochastic differential equation whose stationary distribution matches a target distribution. We build on the recently introduced kernel deviation from stationarity (KDS), which enforces stationarity by evaluating expectations of the diffusion's generator in a reproducing kernel Hilbert space. Leveraging the connection between KDS and Stein discrepancies, we introduce the Stein-type KDS (SKDS) as an alternative formulation. We prove that a vanishing SKDS guarantees alignment of the learned diffusion's stationary distribution with the target. Furthermore, under broad parametrizations, SKDS is convex with an empirical version that is $\epsilon$-quasiconvex with high probability. Empirically, learning with SKDS attains comparable accuracy to KDS while substantially reducing computational cost and yields improvements over the majority of competitive baselines.
Considerable work has been dedicated to hyperspectral single image super-resolution to improve the spatial resolution of hyperspectral images and fully exploit their potential. However, most of these methods are supervised and require some data with ground truth for training, which is often non-available. To overcome this problem, we propose a new unsupervised training strategy for the super-resolution of hyperspectral remote sensing images, based on the use of synthetic abundance data. Its first step decomposes the hyperspectral image into abundances and endmembers by unmixing. Then, an abundance super-resolution neural network is trained using synthetic abundances, which are generated using the dead leaves model in such a way as to faithfully mimic real abundance statistics. Next, the spatial resolution of the considered hyperspectral image abundances is increased using this trained network, and the high resolution hyperspectral image is finally obtained by recombination with the endmembers. Experimental results show the training potential of the synthetic images, and demonstrate the method effectiveness.
Nuclei panoptic segmentation supports cancer diagnostics by integrating both semantic and instance segmentation of different cell types to analyze overall tissue structure and individual nuclei in histopathology images. Major challenges include detecting small objects, handling ambiguous boundaries, and addressing class imbalance. To address these issues, we propose PanopMamba, a novel hybrid encoder-decoder architecture that integrates Mamba and Transformer with additional feature-enhanced fusion via state space modeling. We design a multiscale Mamba backbone and a State Space Model (SSM)-based fusion network to enable efficient long-range perception in pyramid features, thereby extending the pure encoder-decoder framework while facilitating information sharing across multiscale features of nuclei. The proposed SSM-based feature-enhanced fusion integrates pyramid feature networks and dynamic feature enhancement across different spatial scales, enhancing the feature representation of densely overlapping nuclei in both semantic and spatial dimensions. To the best of our knowledge, this is the first Mamba-based approach for panoptic segmentation. Additionally, we introduce alternative evaluation metrics, including image-level Panoptic Quality ($i$PQ), boundary-weighted PQ ($w$PQ), and frequency-weighted PQ ($fw$PQ), which are specifically designed to address the unique challenges of nuclei segmentation and thereby mitigate the potential bias inherent in vanilla PQ. Experimental evaluations on two multiclass nuclei segmentation benchmark datasets, MoNuSAC2020 and NuInsSeg, demonstrate the superiority of PanopMamba for nuclei panoptic segmentation over state-of-the-art methods. Consequently, the robustness of PanopMamba is validated across various metrics, while the distinctiveness of PQ variants is also demonstrated. Code is available at this https URL.
Diffusion-based image super-resolution (SR) has recently attracted significant attention by leveraging the expressive power of large pre-trained text-to-image diffusion models (DMs). A central practical challenge is resolving the trade-off between reconstruction faithfulness and photorealism. To address inference efficiency, many recent works have explored knowledge distillation strategies specifically tailored to SR, enabling one-step diffusion-based approaches. However, these teacher-student formulations are inherently constrained by information compression, which can degrade perceptual cues such as lifelike textures and depth of field, even with high overall perceptual quality. In parallel, self-distillation DMs, known as Flow Map models, have emerged as a promising alternative for image generation tasks, enabling fast inference while preserving the expressivity and training stability of standard DMs. Building on these developments, we propose FlowMapSR, a novel diffusion-based framework for image super-resolution explicitly designed for efficient inference. Beyond adapting Flow Map models to SR, we introduce two complementary enhancements: (i) positive-negative prompting guidance, based on a generalization of classifier free-guidance paradigm to Flow Map models, and (ii) adversarial fine-tuning using Low-Rank Adaptation (LoRA). Among the considered Flow Map formulations (Eulerian, Lagrangian, and Shortcut), we find that the Shortcut variant consistently achieves the best performance when combined with these enhancements. Extensive experiments show that FlowMapSR achieves a better balance between reconstruction faithfulness and photorealism than recent state-of-the-art methods for both x4 and x8 upscaling, while maintaining competitive inference time. Notably, a single model is used for both upscaling factors, without any scale-specific conditioning or degradation-guided mechanisms.
We introduce SeeMPS, a Python library dedicated to implementing tensor network algorithms based on the well-known Matrix Product States (MPS) and Quantized Tensor Train (QTT) formalisms. SeeMPS is implemented as a complete finite precision linear algebra package where exponentially large vector spaces are compressed using the MPS/TT formalism. It enables both low-level operations, such as vector addition, linear transformations, and Hadamard products, as well as high-level algorithms, including the approximation of linear equations, eigenvalue computations, and exponentially efficient Fourier transforms. This library can be used for traditional quantum many-body physics applications and also for quantum-inspired numerical analysis problems, such as solving PDEs, interpolating and integrating multidimensional functions, sampling multivariate probability distributions, etc.
Variational Quantum Algorithms (VQAs) are a class of hybrid quantum-classical algorithms that leverage on classical optimization tools to find the optimal parameters for a parameterized quantum circuit. One relevant application of VQAs is the Variational Quantum Eigensolver (VQE), which aims at steering the output of the quantum circuit to the ground state of a certain Hamiltonian. Recent works have provided global convergence guarantees for VQEs under suitable local surjectivity and smoothness hypotheses, but little has been done in characterizing convergence of these algorithms when the underlying quantum circuit is affected by noise. In this work, we characterize the effect of different coherent and incoherent noise processes on the optimal parameters and the optimal cost of the VQE, and we study their influence on the convergence guarantees of the algorithm. Our work provides novel theoretical insight into the behavior of parameterized quantum circuits. Furthermore, we accompany our results with numerical simulations implemented via Pennylane.
Under the assumption that data lie on a compact (unknown) manifold without boundary, we derive finite sample bounds for kernel smoothing and its (first and second) derivatives, and we establish asymptotic normality through Berry-Esseen type bounds. Special cases include kernel density estimation, kernel regression and the heat kernel signature. Connections to the graph Laplacian are also discussed.
In the NISQ-era, there is a wide variety of hardware manufacturers building quantum computers. Each of these companies may choose different approaches and hardware architectures for their machines. This poses a problem for quantum software engineering, as the retargetability of quantum programs across different hardware platforms becomes a non-trivial challenge. In response to this problem, various retargetable quantum compilers have been presented in the scientific literature. These promise the ability to compile software for different hardware platforms, enabling retargetability for quantum software. In this paper, we develop and apply a metric by which the retargetability of the quantum compilers can be assessed. We develop and run a study to analyze key aspects regarding the retargetability of the compilers Tket, Qiskit, and ProjectQ. Our findings indicate that Tket demonstrates the highest level of retargetability, closely followed by Qiskit, while ProjectQ lags behind. These results provide insights for quantum software developers in selecting appropriate compilers for their use-cases, and highlight areas for improvement in quantum compilers.
Live video denoising under realistic, multi-component sensor noise remains challenging for applications such as autofocus, autonomous driving, and surveillance. We propose PocketDVDNet, a lightweight video denoiser developed using our model compression framework that combines sparsity-guided structured pruning, a physics-informed noise model, and knowledge distillation to achieve high-quality restoration with reduced resource demands. Starting from a reference model, we induce sparsity, apply targeted channel pruning, and retrain a teacher on realistic multi-component noise. The student network learns implicit noise handling, eliminating the need for explicit noise-map inputs. PocketDVDNet reduces the original model size by 74% while improving denoising quality and processing 5-frame patches in real-time. These results demonstrate that aggressive compression, combined with domain-adapted distillation, can reconcile performance and efficiency for practical, real-time video denoising.
Developing high-performance materials is critical for diverse energy applications to increase efficiency, improve sustainability and reduce costs. Classical computational methods have enabled important breakthroughs in energy materials development, but they face scaling and time-complexity limitations, particularly for high-dimensional or strongly correlated material systems. Quantum computing (QC) promises to offer a paradigm shift by exploiting quantum bits with their superposition and entanglement to address challenging problems intractable for classical approaches. This perspective discusses the opportunities in leveraging QC to advance energy materials research and the challenges QC faces in solving complex and high-dimensional problems. We present cases on how QC, when combined with classical computing methods, can be used for the design and simulation of practical energy materials. We also outline the outlook for error-corrected, fault-tolerant QC capable of achieving predictive accuracy and quantum advantage for complex material systems.
The evaluation of heuristic optimizers on test problems, better known as \emph{benchmarking}, is a cornerstone of research in multi-objective optimization. However, most test problems used in benchmarking numerical multi-objective black-box optimizers come from one of two flawed approaches: On the one hand, problems are constructed manually, which result in problems with well-understood optimal solutions, but unrealistic properties and biases. On the other hand, more realistic and complex single-objective problems are composited into multi-objective problems, but with a lack of control and understanding of problem properties. This paper proposes an extensive problem generation approach for bi-objective numerical optimization problems consisting of the combination of theoretically well-understood convex-quadratic functions into unimodal and multimodal landscapes with and without global structure. It supports configuration of test problem properties, such as the number of decision variables, local optima, Pareto front shape, plateaus in the objective space, or degree of conditioning, while maintaining theoretical tractability: The optimal front can be approximated to an arbitrary degree of precision regarding Pareto-compliant performance indicators such as the hypervolume or the exact R2 indicator. To demonstrate the generator's capabilities, a test suite of 20 problem categories, called \emph{BONO-Bench}, is created and subsequently used as a basis of an illustrative benchmark study. Finally, the general approach underlying our proposed generator, together with the associated test suite, is publicly released in the Python package \texttt{bonobench} to facilitate reproducible benchmarking.
We present a behavioral definition of an agent's perceived implication that uniquely identifies a subjective state-space representing her view of a decision problem, and which may differ from the modeler's. By examining belief updating within this model, we formalize the recent empirical consensus that reducing uncertainty improves contingent thinking, and propose a novel form of updating corresponding to the agent 'realizing' a flaw in her own thinking. Finally, we clarify the sense in which contingent thinking makes state-bystate dominance more cognitively demanding than obvious dominance.
We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an ''intensional'' or ''effective'' view of respectively ill-and well-foundedness properties to an ''extensional'' or ''ideal'' view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain $A$, a codomain $B$ and a ''filter'' $T$ on finite approximations of functions from $A$ to $B$, a generalised form GDC$_{A,B,T}$ of the axiom of dependent choice and dually a generalised bar induction principle GBI$_{A,B,T}$ such that: - GDC$_{A,B,T}$ intuitionistically captures the strength of $\bullet$ the general axiom of choice expressed as $\forall a\exists\beta R(a, b) \Rightarrow\exists\alpha\forall a R(\alpha,(a \alpha (a)))$ when $T$ is a filter that derives point-wise from a relation $R$ on $A x B$ without introducing further constraints, $\bullet$ the Boolean Prime Filter Theorem / Ultrafilter Theorem if $B$ is the two-element set $\mathbb{B}$ (for a constructive definition of prime filter), $\bullet$ the axiom of dependent choice if $A = \mathbb{N}$, $\bullet$ Weak K{ö}nig's Lemma if $A = \mathbb{N}$ and $B = \mathbb{B}$ (up to weak classical reasoning) - GBI$_{A,B,T}$ intuitionistically captures the strength of $\bullet$ G{ö}del's completeness theorem in the form validity implies provability for entailment relations if $B = \mathbb{B}$, $\bullet$ bar induction when $A = \mathbb{N}$, $\bullet$ the Weak Fan Theorem when $A = \mathbb{N}$ and $B = \mathbb{B}$. Contrastingly, even though GDC$_{A,B,T}$ and GBI$_{A,B,T}$ smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when $A$ is $\mathbb{B}^\mathbb{N}$ and $B$ is $\mathbb{N}$.
Traditional vertical federated learning schema suffers from two main issues: 1) restricted applicable scope to overlapped samples and 2) high system challenge of real-time federated serving, which limits its application to advertising systems. To this end, we advocate a new practical learning setting, Semi-VFL (Vertical Semi-Federated Learning), for real-world industrial applications, where the learned model retains sufficient advantages of federated learning while supporting independent local serving. To achieve this goal, we propose the carefully designed Joint Privileged Learning framework (JPL) to i) alleviate the absence of the passive party's feature with federated equivalence imitation and ii) adapt to the heterogeneous full sample space with cross-branch rank alignment. Extensive experiments conducted on real-world advertising datasets validate the effectiveness of our method over baseline methods.
Recent nano-technological advances enable the Monolithic 3D (M3D) integration of multiple memory and logic layers in a single chip, allowing for fine-grained connections between layers and significantly alleviating main memory bottlenecks. We show for a variety of workloads, on a state-of-the-art M3D-based system, that the performance and energy bottlenecks shift from main memory to the processor core and cache hierarchy. Therefore, there is a need to revisit current designs that have been conventionally tailored to tackle the memory bottleneck. Based on the insights from our design space exploration, we propose RevaMp3D, introducing five key changes. First, we propose removing the shared last-level cache, as this delivers speedups comparable to or exceeding those from increasing its size or reducing its latency across all workloads. Second, since improving L1 cache latency has a large impact on performance, we reduce L1 latency by leveraging an M3D layout to shorten its wires. Third, we repurpose the area from the removed cache to widen and scale up pipeline structures, accommodating more in-flight requests that are efficiently served by M3D memory. To avoid latency penalties from these larger structures, we leverage M3D layouts. Fourth, to facilitate high thread-level parallelism, we propose a new fine-grained synchronization technique, using M3D's dense inter-layer connectivity. Fifth, we leverage the M3D main memory to mitigate the core bottlenecks. We propose a processor frontend design that memoizes the repetitive fetched, decoded, and reordered instructions, stores them in main memory, and turns off the relevant parts of the core when possible. RevaMp3D provides 1.2x-2.9x speedup and 1.2x-1.4x energy reduction compared to a state-of-the-art M3D system. We also analyze RevaMp3D's design decisions across various memory latencies to facilitate latency-aware design decisions.
A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. The ability to generalize across tasks is important as it determines an agent's adaptability to real-world scenarios where reward mechanisms might vary. In this work, we first show that training a general world model can utilize similar structures in these tasks and help train more generalizable agents. Extending world models into the task generalization setting, we introduce a novel method named Task Aware Dreamer (TAD), which integrates reward-informed features to identify consistent latent characteristics across tasks. Within TAD, we compute the variational lower bound of sample data log-likelihood, which introduces a new term designed to differentiate tasks using their states, as the optimization objective of our reward-informed world models. To demonstrate the advantages of the reward-informed policy in TAD, we introduce a new metric called Task Distribution Relevance (TDR) which quantitatively measures the relevance of different tasks. For tasks exhibiting a high TDR, i.e., the tasks differ significantly, we illustrate that Markovian policies struggle to distinguish them, thus it is necessary to utilize reward-informed policies in TAD. Extensive experiments in both image-based and state-based tasks show that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and display a strong generalization ability to unseen tasks.
Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
When solving NLP tasks with limited labelled data, researchers typically either use a general large language model without further update, or use a small number of labelled samples to tune a specialised smaller model. In this work, we answer an important question -- how many labelled samples are required for the specialised small models to outperform general large models, while taking the performance variance into consideration. By observing the behaviour of fine-tuning, instruction-tuning, prompting and in-context learning on 8 language models, we identify such performance break-even points across 8 representative text classification tasks of varying characteristics. We show that the specialised models often need only few samples (on average $100$) to be on par or better than the general ones. At the same time, the number of required labels strongly depends on the dataset or task characteristics, with fine-tuning on binary datasets requiring significantly more samples. When performance variance is taken into consideration, the number of required labels increases on average by $100 - 200\%$. Finally, larger models do not consistently lead to better performance and lower variance, with 4-bit quantisation having negligible impact.
We investigate full-duplex (FD) multi-user multiple input single-output systems with coarse quantization, aiming to characterize the impact of employing low-resolution analog-to-digital converters (ADCs) on self-interference (SI) and to develop a quantization- and SI-aware beamforming method that alleviates quantization-induced performance degradation in the FD systems. We first present an analysis on the perantenna signal-to-quantization noise ratio for conventional linear beamformers to provide the desired range of the number of analog-to-digital converter (ADC) bits, providing system insights for reliable FD operation in regard to the ADC resolution and beamforming strategy. Motivated by the insights, we then propose an SI-aware beamforming method that mitigates residual SI and quantization distortion. The resulting spectral efficiency (SE) maximization problem is decomposed into two tractable subproblems solved via alternating optimization: precoder and combiner design. The precoder optimization is formulated as a generalized eigenvalue problem, where the dominant eigenvector yields the best stationary solution through power iteration, while the combiner is derived as a quantization-aware minimum meansquared error (MMSE) filter. Numerical studies show that the number of required ADC bits with the proposed beamforming falls within the derived theoretical range while achieving the highest SE compared to benchmarks.
Text classification is a crucial and fundamental task in web content mining. Compared with the previous learning paradigm of pre-training and fine-tuning by cross entropy loss, the recently proposed supervised contrastive learning approach has received tremendous attention due to its powerful feature learning capability and robustness. Although several studies have incorporated this technique for text classification, some limitations remain. First, many text datasets are imbalanced, and the learning mechanism of supervised contrastive learning is sensitive to data imbalance, which may harm the model's performance. Moreover, these models leverage separate classification branches with cross entropy and supervised contrastive learning branches without explicit mutual guidance. To this end, we propose a novel model named SharpReCL for imbalanced text classification tasks. First, we obtain the prototype vector of each class in the balanced classification branch to act as a representation of each class. Then, by further explicitly leveraging the prototype vectors, we construct a proper and sufficient target sample set with the same size for each class to perform the supervised contrastive learning procedure. The empirical results show the effectiveness of our model, which even outperforms popular large language models across several datasets. Our code is available here.
The presence of spherical distortion in equirectangular projection (ERP) images presents a persistent challenge in dense regression tasks such as surface normal estimation. Although it may appear straightforward to repurpose architectures developed for 360° depth estimation, our empirical findings indicate that such models yield suboptimal performance when applied to surface normal prediction. This is largely attributed to their architectural bias toward capturing global scene layout, which comes at the expense of the fine-grained local geometric cues that are critical for accurate surface orientation estimation. While convolutional neural networks (CNNs) have been employed to mitigate spherical distortion, their fixed receptive fields limit their ability to capture holistic scene structure. Conversely, vision transformers (ViTs) are capable of modeling long-range dependencies via global self-attention, but often fail to preserve high-frequency local detail. To address these limitations, we propose \textit{PanoNormal}, a monocular surface normal estimation architecture for 360° images that integrates the complementary strengths of CNNs and ViTs. In particular, we design a multi-level global self-attention mechanism that explicitly accounts for the spherical feature distribution, enabling our model to recover both global contextual structure and local geometric details. Experimental results demonstrate that our method not only achieves state-of-the-art performance on several benchmark 360° datasets, but also significantly outperforms adapted depth estimation models on the task of surface normal prediction. The code and model are available at this https URL.
In open-set semi-supervised learning (OSSL), we consider unlabeled datasets that may contain unknown classes. Existing OSSL methods often use the softmax confidence for classifying data as in-distribution (ID) or out-of-distribution (OOD). Additionally, many works for OSSL rely on ad-hoc thresholds for ID/OOD classification, without considering the statistics of the problem. We propose a new score for ID/OOD classification based on angles in feature space between data and an ID subspace. Moreover, we propose an approach to estimate the conditional distributions of scores given ID or OOD data, enabling probabilistic predictions of data being ID or OOD. These components are put together in a framework for OSSL, termed ProSub, that is experimentally shown to reach SOTA performance on several benchmark problems. Our code is available at this https URL.
Cross-attention has emerged as a cornerstone module in modern artificial intelligence, underpinning critical applications such as retrieval-augmented generation (RAG), system prompting, and guided stable diffusion. However, this is a rising concern about securing the privacy of cross-attention, as the underlying key and value matrices frequently encode sensitive data or private user information. In this work, we introduce a novel data structure designed to enforce differential privacy (DP) for cross-attention mechanisms, accompanied by provable theoretical guarantees. Specifically, letting $n$ denote the input sequence length, $d$ the feature dimension, $R$ the maximum magnitude of query and key matrices, $R_w$ the maximum magnitude of the value matrix, and $r, s, \epsilon_s$ the parameters for polynomial kernel methods, our proposed structure achieves $\widetilde{O}(ndr^2)$ space and initialization complexity, with a query time of $\widetilde{O}(d r^2)$ per token. Moreover, we demonstrate that our mechanism satisfies $(\epsilon, \delta)$-DP, incurring an additive error of $\widetilde{O}((1-\epsilon_s)^{-1} n^{-1} \epsilon^{-1} R^{2s} R_w r^2)$ and a relative error of $2\epsilon_s/(1-\epsilon_s)$ with respect to the ground truth. Crucially, our framework maintains robustness against adaptive queries, ensuring security even in adversarial settings. To the best of our knowledge, this constitutes the first approach providing provable differential privacy for cross-attention, establishing a foundation for future privacy-preserving algorithms in large generative models (LGMs).
We consider several problems related to packing forests in graphs. The first one is to find $k$ edge-disjoint forests in a directed graph $G$ of maximal size such that the indegree of each vertex in these forests is at most $k$. We describe a min-max characterization for this problem and show that it can be solved in almost linear time for fixed $k$, extending the algorithm of [Gabow, 1995]. Specifically, the complexity is $O(k \delta m \log n)$, where $n, m$ are the number of vertices and edges in $G$ respectively, and $\delta = \max\{1, k - k_G\}$, where $k_G$ is the edge connectivity of the graph. Using our solution to this problem, we improve complexities for two existing applications: (1) $k$-forest problem: find $k$ forests in an undirected graph $G$ maximizing the number of edges in their union. We show how to solve this problem in $O(k^3 \min\{kn, m\} \log^2 n + k \cdot{\rm MAXFLOW}(m, m) \log n)$ time, breaking the $O_k(n^{3/2})$ complexity barrier of previously known approaches. (2) Directed edge-connectivity augmentation problem: find a smallest set of directed edges whose addition to the given directed graph makes it strongly $k$-connected. We improve the deterministic complexity for this problem from $O(k \delta (m+\delta n)\log n)$ [Gabow, STOC 1994] to $O(k \delta m \log n)$. A similar approach with the same complexity also works for the undirected version of the problem.
Differentiating generated and human-written content is increasingly difficult. We examine how an incentive to convey humanness and task characteristics shape this human vs AI race across five studies. In Study 1-2 (n=530 and n=610) humans and a large language model (LLM) wrote relationship advice or relationship descriptions, either with or without instructions to sound human. New participants (n=428 and n=408) judged each text's source. Instructions to sound human were only effective for the LLM, reducing the human advantage. Study 3 (n=360 and n=350) showed that these effects persist when writers were instructed to avoid sounding like an LLM. Study 4 (n=219) tested empathy as mechanism of humanness and concluded that LLMs can produce empathy without humanness and humanness without empathy. Finally, computational text analysis (Study 5) indicated that LLMs become more human-like by applying an implicit representation of humanness to mimic stochastic empathy.
Information Retrieval (IR) methods aim to identify documents relevant to a query, which have been widely applied in various natural language tasks. However, existing approaches typically consider only the textual content within documents, overlooking the fact that documents can contain multiple modalities, including images and tables. Also, they often segment each long document into multiple discrete passages for embedding, which prevents them from capturing the overall document context and interactions between paragraphs. To address these two challenges, we propose a method that holistically embeds documents interleaved with multiple modalities by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse IR scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information within documents.
Large Language Models (LLMs) exhibit exceptional proficiency in handling extensive context windows in natural language. Nevertheless, the quadratic scaling of attention computation relative to sequence length creates substantial efficiency bottlenecks, necessitating the development of I/O-optimized algorithms. In this work, we conduct a systematic examination of the I/O complexity inherent in attention mechanisms, with a specific emphasis on the backward pass under both small and large cache settings. By leveraging the red-blue pebble game framework, we derive tight bounds for I/O complexity across the full spectrum of cache sizes. We validate that FlashAttention, one of the current industry standards, achieves optimality in the large-cache scenario for both forward and backward passes. Conversely, for small-cache environments, we introduce a novel algorithm that outperforms contemporary methods and successfully attains theoretical tight bounds. Furthermore, we expand our investigation to include sparse attention by establishing granular lower bounds for both forward and backward passes across all cache configurations. Ultimately, our results solidify the theoretical framework regarding I/O complexity in attention mechanisms, providing critical guidance for the development of efficient LLM training and inference systems.
Previous text-to-SQL datasets and systems have primarily focused on user questions with clear intentions that can be answered. However, real user questions can often be ambiguous with multiple interpretations or unanswerable due to a lack of relevant data. In this work, we construct a practical conversational text-to-SQL dataset called PRACTIQ, consisting of ambiguous and unanswerable questions inspired by real-world user questions. We first identified four categories of ambiguous questions and four categories of unanswerable questions by studying existing text-to-SQL datasets. Then, we generate conversations with four turns: the initial user question, an assistant response seeking clarification, the user's clarification, and the assistant's clarified SQL response with the natural language explanation of the execution results. For some ambiguous queries, we also directly generate helpful SQL responses, that consider multiple aspects of ambiguity, instead of requesting user clarification. To benchmark the performance on ambiguous, unanswerable, and answerable questions, we implemented large language model (LLM)-based baselines using various LLMs. Our approach involves two steps: question category classification and clarification SQL prediction. Our experiments reveal that state-of-the-art systems struggle to handle ambiguous and unanswerable questions effectively. We will release our code for data generation and experiments on GitHub.
In cybersecurity, security analysts constantly face the challenge of mitigating newly discovered vulnerabilities in real-time, with over 300,000 vulnerabilities identified since 1999. The sheer volume of known vulnerabilities complicates the detection of patterns for unknown threats. While LLMs can assist, they often hallucinate and lack alignment with recent threats. Over 40,000 vulnerabilities have been identified in 2024 alone, which are introduced after most popular LLMs' (e.g., GPT-5) training data cutoff. This raises a major challenge of leveraging LLMs in cybersecurity, where accuracy and up-to-date information are paramount. Therefore, we aim to improve the adaptation of LLMs in vulnerability analysis by mimicking how an analyst performs such tasks. We propose ProveRAG, an LLM-powered system designed to assist in rapidly analyzing vulnerabilities with automated retrieval augmentation of web data while self-evaluating its responses with verifiable evidence. ProveRAG incorporates a self-critique mechanism to help alleviate the omission and hallucination common in the output of LLMs applied in cybersecurity applications. The system cross-references data from verifiable sources (NVD and CWE), giving analysts confidence in the actionable insights provided. Our results indicate that ProveRAG excels in delivering verifiable evidence to the user with over 99% and 97% accuracy in exploitation and mitigation strategies, respectively. ProveRAG guides analysts to secure their systems more effectively by overcoming temporal and context-window limitations while also documenting the process for future audits.
We study the problem of robot navigation in dense and interactive crowds with static constraints such as corridors and furniture. Previous methods fail to consider all types of spatial and temporal interactions among agents and obstacles, leading to unsafe and inefficient robot paths. In this article, we leverage a graph-based representation of crowded and constrained scenarios and propose a structured framework to learn robot navigation policies with deep reinforcement learning. We first split the representations of different inputs and propose a heterogeneous spatio-temporal graph to model distinct interactions among humans, robots, and obstacles. Based on the heterogeneous spatio-temporal graph, we propose HEIGHT, a novel navigation policy network architecture with different components to capture heterogeneous interactions through space and time. HEIGHT utilizes attention mechanisms to prioritize important interactions and a recurrent network to track changes in the dynamic scene over time, encouraging the robot to avoid collisions adaptively. Through extensive simulation and real-world experiments, we demonstrate that HEIGHT outperforms state-of-the-art baselines in terms of success, navigation time, and generalization to domain shifts in challenging navigation scenarios. More information is available at this https URL.
Software built on poor structural patterns often shows higher exposure to security defects. When code differs from established best practices, verification and maintenance become increasingly difficult, thereby raising the risk of unintentional vulnerabilities. In the context of blockchain technology, where immutable smart contracts handle high-value transactions, the need for strict security assurance is important. This research analyzes the utility of software complexity metrics as diagnostic tools for identifying vulnerable Solidity smart contracts. We evaluate the hypothesis that complexity measures serve as vital, complementary signals for security assessment. Through an empirical examination of 21 distinct metrics, we analyzed their inter-dependencies, statistical association with vulnerabilities, and discriminative capabilities. Our findings indicate a significant degree of redundancy among certain metrics and a relatively low correlation between any single metric and the presence of vulnerabilities. However, the data demonstrates that these metrics possess strong power to distinguish between secure and vulnerable code when analyzed collectively. Notably, with only three exceptions, vulnerable contracts consistently exhibited higher mean complexity scores than their neutral counterparts. While our results show a statistical association, we emphasize that complexity is an indicator rather than a direct cause of vulnerability.
The high costs and risks involved in extensive environment interactions hinder the practical application of current online safe reinforcement learning (RL) methods. While offline safe RL addresses this by learning policies from static datasets, the performance therein is usually limited due to reliance on data quality and challenges with out-of-distribution (OOD) actions. Inspired by recent successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can be leveraged to facilitate faster and safer online policy learning, a direction that has yet to be fully investigated. To fill this gap, we first demonstrate that naively applying existing O2O algorithms from standard RL would not work well in the safe RL setting due to two unique challenges: \emph{erroneous Q-estimations}, resulted from offline-online objective mismatch and offline cost sparsity, and \emph{Lagrangian mismatch}, resulted from difficulties in aligning Lagrange multipliers between offline and online policies. To address these challenges, we introduce \textbf{Marvel}, a novel framework for O2O safe RL, comprising two key components that work in concert: \emph{Value Pre-Alignment} to align the Q-functions with the underlying truth before online learning, and \emph{Adaptive PID Control} to effectively adjust the Lagrange multipliers during online finetuning. Extensive experiments demonstrate that Marvel significantly outperforms existing baselines in both reward maximization and safety constraint satisfaction. By introducing the first policy-finetuning based framework for O2O safe RL, which is compatible with many offline and online safe RL methods, our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
Modern Hopfield Networks (MHNs) have emerged as powerful components in deep learning, serving as effective replacements for pooling layers, LSTMs, and attention mechanisms. While recent advancements have significantly improved their storage capacity and retrieval efficiency, their fundamental theoretical boundaries remain underexplored. In this paper, we rigorously characterize the expressive power of MHNs through the lens of circuit complexity theory. We prove that $\mathrm{poly}(n)$-precision MHNs with constant depth and linear hidden dimension fall within the $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ complexity class. Consequently, assuming $\mathsf{TC}^0 \neq \mathsf{NC}^1$, we demonstrate that these architectures are incapable of solving $\mathsf{NC}^1$-hard problems, such as undirected graph connectivity and tree isomorphism. We further extend these impossibility results to Kernelized Hopfield Networks. However, we show that these limitations are not absolute: we prove that equipping MHNs with a Chain-of-Thought (CoT) mechanism enables them to transcend the $\mathsf{TC}^0$ barrier, allowing them to solve inherently serial problems like the word problem for the permutation group $S_5$. Collectively, our results delineate a fine-grained boundary between the capabilities of standard MHNs and those augmented with reasoning steps.
Extracting interpretable equations from observational datasets to describe complex natural phenomena is one of the core goals of artificial intelligence. This field is known as symbolic regression (SR). In recent years, Transformer-based paradigms have become a new trend in SR, addressing the well-known problem of inefficient search. However, the modal heterogeneity between datasets and equations often hinders the convergence and generalization of these models. In this paper, we propose ViSymRe, a Vision Symbolic Regression framework, to explore the positive role of visual modality in enhancing the performance of Transformer-based SR paradigms. To overcome the challenge where the visual SR model is untrainable in high-dimensional scenarios, we present Multi-View Random Slicing (MVRS). By projecting multivariate equations into 2-D space using random affine transformations, MVRS avoids common defects in high-dimensional visualization, such as variable degradation, non-linear interaction missing, and exponentially increasing sampling complexity, enabling ViSymRe to be trained with low computational costs. To support dataset-only deployment of ViSymRe, we design a dual-vision pipeline architecture based on generative techniques, which reconstructs visual features directly from the datasets via an auxiliary Visual Decoder and automatically suppresses the attention weights of reconstruction noise through a proposed Biased Cross-Attention feature fusion module, ensuring that subsequent processes are not affected by noisy modalities. Ablation studies demonstrate the positive contribution of visual modality to improving model convergence level and enhancing various SR metrics. Furthermore, evaluation results on mainstream benchmarks indicate that ViSymRe achieves competitive performance compared to baselines, particularly in low-complexity and rapid-inference scenarios.
Simultaneous Localization and Mapping (SLAM) systems typically assume static, distant illumination; however, many real-world scenarios, such as endoscopy, subterranean robotics, and search & rescue in collapsed environments, require agents to operate with a co-located light and camera in the absence of external lighting. In such cases, dynamic near-field lighting introduces strong, view-dependent shading that significantly degrades SLAM performance. We introduce Near-Field Lighting Bundle Adjustment Loss (NFL-BA) which explicitly models near-field lighting as a part of Bundle Adjustment loss and enables better performance for scenes captured with dynamic lighting. NFL-BA can be integrated into neural rendering-based SLAM systems with implicit or explicit scene representations. Our evaluations mainly focus on endoscopy procedure where SLAM can enable autonomous navigation, guidance to unsurveyed regions, blindspot detections, and 3D visualizations, which can significantly improve patient outcomes and endoscopy experience for both physicians and patients. Replacing Photometric Bundle Adjustment loss of SLAM systems with NFL-BA leads to significant improvement in camera tracking, 37% for MonoGS and 14% for EndoGS, and leads to state-of-the-art camera tracking and mapping performance on the C3VD colonoscopy dataset. Further evaluation on indoor scenes captured with phone camera with flashlight turned on, also demonstrate significant improvement in SLAM performance due to NFL-BA. See results at this https URL
Humans possess a remarkable ability to acquire knowledge efficiently and apply it across diverse modalities through a coherent and shared understanding of the world. Inspired by this cognitive capability, we introduce a concept-centric multi-modality learning framework built around a modality-agnostic concept space that captures structured, abstract knowledge, alongside a set of modality-specific projection models that map raw inputs onto this shared space. The concept space is decoupled from any specific modality and serves as a repository of universally applicable knowledge. Once learned, the knowledge embedded in the concept space enables more efficient adaptation to new modalities, as projection models can align with existing conceptual representations rather than learning from scratch. This efficiency is empirically validated in our experiments, where the proposed framework exhibits faster convergence compared to baseline models. In addition, the framework's modular design supports seamless integration of new modalities, since projection models are trained independently yet produce unified outputs within the shared concept space. We evaluate the framework on two representative downstream tasks. While the focus is not on task-specific optimization, the framework attains comparable results with a smaller training footprint, no task-specific fine-tuning, and inference performed entirely within a shared space of learned concepts that offers interpretability. These findings point toward a promising direction for developing learning systems that operate in a manner more consistent with human cognitive processes.
Low Earth Orbit (LEO) satellite networks have attracted considerable attention for their ability to deliver global, low-latency broadband Internet services. In this paper, we present a large-scale measurement study of the Starlink network, the largest LEO satellite constellation to date. We first propose an efficient method for discovering active Starlink user routers, identifying approximately 5.98 million IPv6 addresses across 208 regions in 165 countries. Compared to general-purpose IPv6 target generation algorithms, our router-centric approach achieves near-complete coverage and, to the best of our knowledge, yields the most comprehensive known set of active IPv6 addresses for Starlink user routers. Based on the discovered user routers, we further propose an efficient method for mapping the Starlink backbone network and uncover a topology consisting of 49 Points of Presence (PoPs) interconnected by 98 links. We conduct a detailed statistical analysis of active Starlink user routers and PoPs, and further characterize the IPv6 address assignment strategy adopted by the Starlink network. Finally, we analyze the latency of Starlink user routers, propose a method to distinguish different types of users within the same region using outside-in measurement, and identify the ongoing V2 Mini satellite deployment as a potential driver of the performance improvements. The dataset of the Starlink backbone network is publicly available at this https URL.
Artificial intelligence (AI) has undergone transformative advances since 2022, particularly through generative AI, large language models (LLMs), and diffusion models, fundamentally reshaping the creative industries. However, existing reviews have not comprehensively addressed these recent breakthroughs and their integrated impact across the creative production pipeline. This paper addresses this gap by providing a systematic review of AI technologies that have emerged or matured since our 2022 review, examining their applications across content creation, information analysis, post-production enhancement, compression, and quality assessment. We document how transformers, LLMs, diffusion models, and implicit neural representations have established new capabilities in text-to-image/video generation, real-time 3D reconstruction, and unified multi-task frameworks-shifting AI from support tool to core creative technology. Beyond technological advances, we analyze the trend toward unified AI frameworks that integrate multiple creative tasks, replacing task-specific solutions. We critically examine the evolving role of human-AI collaboration, where human oversight remains essential for creative direction and mitigating AI hallucinations. Finally, we identify emerging challenges including copyright concerns, bias mitigation, computational demands, and the need for robust regulatory frameworks. This review provides researchers and practitioners with a comprehensive understanding of current AI capabilities, limitations, and future trajectories in creative applications.
Temporal graphs arise when modeling interactions that evolve over time. They usually come in several flavors, depending on the number of parameters used to describe the temporal aspects of the interactions: time of appearance, duration, delay of transmission. In the point model, edges appear at specific points in time, whereas in the more general interval model, edges can be present over specific time intervals. In both models, the delay for traversing an edge can change with each edge appearance. When time is discrete, the two models are equivalent in the sense that the presence of an edge during an interval is equivalent to a sequence of point-in-time occurrences of the edge. However, this transformation can drastically change the size of the input and has implications for complexity. Indeed, we show a gap between the two models with respect to the complexity of the classical problem of computing a fastest temporal path from a source vertex to a target vertex, i.e. a path where edges can be traversed one after another in time and such that the total duration from source to target is minimized. It can be solved in near-linear time in the point model, while we show that the interval model requires quadratic time under classical assumptions of fine-grained complexity. With respect to linear time, our lower bound implies a factor of the number of vertices, while the best known algorithm has a factor of the number of underlying edges. We also show a similar complexity gap for computing a shortest temporal path, i.e. a temporal path with a minimum number of edges. Here our lower bound matches known upper bounds up to a logarithmic factor. Interestingly, we show that near-linear time for fastest temporal path computation is possible in the interval model when it is restricted to uniform delay zero, i.e., when traversing an edge is instantaneous. However, this special case is not exempt from our lower bound for shortest temporal path computation. These two results should be contrasted with the computation of a foremost temporal path, i.e., a temporal path that arrives as early as possible. It is well known that this computation can be solved in near-linear time in both models. We also show that there is no gap in testing the all-to-all temporal connectivity of a temporal graph. We demonstrate a quadratic lower bound that applies to both the interval and point models and aligns with the existing upper bounds.
This paper studies fair division of divisible and indivisible items among agents whose cardinal preferences are not necessarily monotone. We establish the existence of fair divisions and develop approximation algorithms to compute them. We address two complementary valuation classes, subadditive and nonnegative, which go beyond monotone functions. Considering both the division of cake (divisible resources) and allocation of indivisible items, we obtain fairness guarantees in terms of (approximate) envy-freeness (EF) and equability (EQ). In the context of envy-freeness, we prove that an EF division of a cake always exists under cake valuations that are subadditive and globally nonnegative. This result complements the nonexistence of EF allocations for burnt cakes known for more general valuations. In the indivisible-items setting, we establish the existence of EFE3 allocations for subadditive and globally nonnegative valuations. In addition, we obtain universal existence of EFE3 allocations under nonnegative valuations. We study equitability under nonnegative valuations. Here, we prove that EQE3 allocations always exist when the agents' valuations are nonnegative. Also, in the indivisible-items setting, we develop an approximation algorithm that, for given nonnegative valuations, finds allocations that are equitable within additive margins. Our results have combinatorial implications. For instance, the developed results imply the universal existence of proximately dense subgraphs: Given any graph $G=(V, E)$ and integer $k$ (at most $|V|$), there always exists a partition $V_1, V_2, \ldots, V_k$ of the vertex set such that the edge densities within the parts, $V_i$, are additively within four of each other. Further, such a partition can be computed efficiently.
This paper presents a method for text simplification based on two neural architectures: a neural machine translation (NMT) model and a fine-tuned large language model (LLaMA). Given the scarcity of existing resources for Estonian, a new dataset was created by combining manually translated corpora with GPT-4.0-generated simplifications. OpenNMT was selected as a representative NMT-based system, while LLaMA was fine-tuned on the constructed dataset. Evaluation shows LLaMA outperforms OpenNMT in grammaticality, readability, and meaning preservation. These results underscore the effectiveness of large language models for text simplification in low-resource language settings. The complete dataset, fine-tuning scripts, and evaluation pipeline are provided in a publicly accessible supplementary package to support reproducibility and adaptation to other languages.
The Bloom filter is a simple yet space-efficient probabilistic data structure that supports membership queries for dramatically large datasets. It is widely utilized and implemented across various industrial scenarios, often handling massive datasets that include sensitive user information necessitating privacy preservation. To address the challenge of maintaining privacy within the Bloom filter, we have developed the DPBloomfilter. This innovation integrates the classical differential privacy mechanism, specifically the Random Response technique, into the Bloom filter, offering robust privacy guarantees under the same running complexity as the standard Bloom filter. Through rigorous simulation experiments, we have demonstrated that our DPBloomfilter algorithm maintains high utility while ensuring privacy protections. To the best of our knowledge, this is the first work to provide differential privacy guarantees for the Bloom filter for membership query problems.
The goal of inductive logic programming (ILP) is to find a set of logical rules that generalises training examples and background knowledge. We introduce an ILP approach that identifies pointless rules. A rule is pointless if it contains a redundant literal or cannot discriminate against negative examples. We show that ignoring pointless rules allows an ILP system to soundly prune the hypothesis space. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce learning times by 99% whilst maintaining predictive accuracies.
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{this https URL}{LayerNorm-Scaling}.
Recent advancements in autoregressive Large Language Models (LLMs) have achieved significant milestones, largely attributed to their scalability, often referred to as the "scaling law". Inspired by these achievements, there has been a growing interest in adapting LLMs for Recommendation Systems (RecSys) by reformulating RecSys tasks into generative problems. However, these End-to-End Generative Recommendation (E2E-GR) methods tend to prioritize idealized goals, often at the expense of the practical advantages offered by traditional Deep Learning based Recommendation Models (DLRMs) in terms of in features, architecture, and practices. This disparity between idealized goals and practical needs introduces several challenges and limitations, locking the scaling law in industrial RecSys. In this paper, we introduce a large user model (LUM) that addresses these limitations through a three-step paradigm, designed to meet the stringent requirements of industrial settings while unlocking the potential for scalable recommendations. Our extensive experimental evaluations demonstrate that LUM outperforms both state-of-the-art DLRMs and E2E-GR approaches. Notably, LUM exhibits excellent scalability, with performance improvements observed as the model scales up to 7 billion parameters. Additionally, we have successfully deployed LUM in an industrial application, where it achieved significant gains in an A/B test, further validating its effectiveness and practicality.
Explainable Artificial Intelligence (XAI) is essential for the transparency and clinical adoption of Clinical Decision Support Systems (CDSS). However, the real-world effectiveness of existing XAI methods remains limited and is inconsistently evaluated. This study conducts a systematic PRISMA-guided survey of 31 human-centered evaluations (HCE) of XAI applied to CDSS, classifying them by XAI methodology, evaluation design, and adoption barrier. Our findings reveal that most existing studies employ post-hoc, model-agnostic approaches such as SHAP and Grad-CAM, typically assessed through small-scale clinician studies. The results show that over 80% of the studies adopt post-hoc, model-agnostic approaches such as SHAP and Grad-CAM, and that clinician sample sizes remain below 25 participants. The findings indicate that explanations generally improve clinician trust and diagnostic confidence, but frequently increase cognitive load and exhibit misalignment with domain reasoning processes. To bridge these gaps, we propose a stakeholder-centric evaluation framework that integrates socio-technical principles and human-computer interaction to guide the future development of clinically viable and trustworthy XAI-based CDSS.
Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: this https URL.
Recent advancements in large language models (LLMs) have shown remarkable potential in automating machine learning tasks. However, existing LLM-based agents often struggle with low-diversity and suboptimal code generation. While recent work has introduced Monte Carlo Tree Search (MCTS) to address these issues, limitations persist in the quality and diversity of thoughts generated, as well as in the scalar value feedback mechanisms used for node selection. In this study, we introduce Introspective Monte Carlo Tree Search (I-MCTS), a novel approach that iteratively expands tree nodes through an introspective process that meticulously analyzes solutions and results from parent and sibling nodes. This facilitates a continuous refinement of the node in the search tree, thereby enhancing the overall decision-making process. Furthermore, we integrate a Large Language Model (LLM)-based value model to facilitate direct evaluation of each node's solution prior to conducting comprehensive computational rollouts. A hybrid rewarding mechanism is implemented to seamlessly transition the Q-value from LLM-estimated scores to actual performance scores. This allows higher-quality nodes to be traversed earlier. Applied to the various ML tasks, our approach demonstrates a 4% absolute improvement in performance compared to the strong open-source AutoML agents, showcasing its effectiveness in enhancing agentic AutoML systems. Resource available at this https URL
The expressive power and computational complexity of deep visual generative models, such as flow-based and autoregressive (AR) models, have gained considerable interest for their wide-ranging applications in generative tasks. However, the theoretical characterization of their expressiveness through the lens of circuit complexity remains underexplored, particularly for the state-of-the-art architecture like FlowAR proposed by [Ren et al., 2024], which integrates flow-based and autoregressive mechanisms. This gap limits our understanding of their inherent computational limits and practical efficiency. In this study, we address this gap by analyzing the circuit complexity of the FlowAR architecture. We demonstrate that when the largest feature map produced by the FlowAR model has dimensions $n \times n \times c$, the FlowAR model is simulable by a family of threshold circuits $\mathsf{TC}^0$, which have constant depth $O(1)$ and polynomial width $\mathrm{poly}(n)$. This is the first study to rigorously highlight the limitations in the expressive power of FlowAR models. Furthermore, we identify the conditions under which the FlowAR model computations can achieve almost quadratic time. To validate our theoretical findings, we present efficient model variant constructions based on low-rank approximations that align with the derived criteria. Our work provides a foundation for future comparisons with other generative paradigms and guides the development of more efficient and expressive implementations.
Retrieval Augmented Generation (RAG) has gained popularity as a method for conveniently incorporating novel facts that were not seen during the pre-training stage in Large Language Model (LLM)-based Natural Language Generation (NLG) systems. However, LLMs are known to encode significant levels of unfair social biases. The modulation of these biases by RAG in NLG systems is not well understood. In this paper, we systematically study the relationship between the different components of a RAG system and the social biases presented in the text generated across three languages (i.e. English, Japanese and Chinese) and four social bias types (i.e. gender, race, age and religion). Specifically, using the Bias Question Answering (BBQ) benchmark datasets, we evaluate the social biases in RAG responses from document collections with varying levels of stereotypical biases, employing multiple LLMs used as generators. We find that the biases in document collections are often amplified in the generated responses, even when the generating LLM exhibits a low-level of bias. Our findings raise concerns about the use of RAG as a technique for injecting novel facts into NLG systems and call for careful evaluation of potential social biases in RAG applications before their real-world deployment.
Shared-memory concurrency is difficult to reason about because each thread executes under interference from other threads. At the same time, many correctness arguments for classic algorithms are epistemic: a thread enters a critical region only when, from its local view, it can rule out that another thread is concurrently in that region. We make such arguments explicit by introducing a past-time temporal epistemic logic interpreted over interleaving executions with perfect-recall local histories. Past-time operators support "since" reasoning, while epistemic modalities capture what a given thread can conclude from its own observation history. We give semantics and a sound proof system, instantiate the logic to a simple shared-memory language with instrumented read/write observations, and illustrate the approach on Peterson's mutual exclusion algorithm by proving a local knowledge condition that implies mutual exclusion.
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
Self-supervised learning (SSL) with Vision Transformers (ViT) has shown immense potential in medical image analysis. However, the quadratic complexity ($\mathcal{O}(N^2)$) of standard self-attention poses a severe barrier for high-resolution biomedical tasks, effectively excluding resource-constrained research labs from utilizing state-of-the-art models. To address this computational bottleneck without sacrificing diagnostic accuracy, we propose \textbf{MIRAM}, a Multi-scale Masked Autoencoder that leverages a \textbf{hybrid-attention mechanism}. Our architecture uniquely decouples semantic learning from detail reconstruction using a dual-decoder design: a standard transformer decoder captures global semantics at low resolution, while a linear-complexity decoder (comparing Linformer, Performer, and Nyströmformer) handles the computationally expensive high-resolution reconstruction. This reduces the complexity of the upscaling stage from quadratic to linear ($\mathcal{O}(N)$), enabling high-fidelity training on consumer-grade GPUs. We validate our approach on the CBIS-DDSM mammography dataset. Remarkably, our \textbf{Nyströmformer-based variant} achieves a classification accuracy of \textbf{61.0\%}, outperforming both standard MAE (58.9\%) and MoCo-v3 (60.2\%) while requiring significantly less memory. These results demonstrate that hybrid-attention architectures can democratize high-resolution medical AI, making powerful SSL accessible to researchers with limited hardware resources.
This paper proposes a frequency-wise approach for stability analysis of multi-input, multi-output (MIMO) Linear Time-Invariant (LTI) feedback systems through Scaled Relative Graphs (SRGs). Unlike traditional methods, such as the Generalized Nyquist Criterion (GNC), which relies on a coupled analysis that requires the multiplication of models, our approach enables the evaluation of system stability in a decoupled fashion, system by system, each of which is represented by its SRG (or an over-approximation thereof), and it provides an intuitive, visual representation of system behavior. Our results provide conditions for certifying the stability of stable and square MIMO LTI systems connected in closed loop.
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
Surgical object detection in laparoscopic videos enables real-time instrument identification for workflow analysis and skills assessment, but training robust models such as You Only Look Once (YOLO) is challenged by limited data, privacy constraints, and inter-institutional variability. Federated learning (FL) enables collaborative training without sharing raw data, yet practical support for modern YOLO pipelines under heterogeneous surgical data remains limited. We present UltraFlwr, an open-source, communication-efficient, and edge-deployable framework that integrates Ultralytics YOLO with the Flower FL platform and supports native Partial Aggregation (PA) of YOLO components (backbone, neck, head). Using two public laparoscopic surgical tool detection datasets, we conduct a systematic empirical study of federated YOLO training under Independent and Identically Distributed (IID) and multiple clinically motivated heterogeneous scenarios, including differences in data curation, video length, and label availability. Results show that standard FL aggregators (e.g., FedAvg) do not consistently match centralized training per client, but reduce inter-client performance variability. Aggregating both backbone and neck components achieves performance comparable to full aggregation with lower communication costs. Also, improving within-client data consistency can benefit FL even when it increases distribution shift across clients. These findings provide practical guidance for deploying federated YOLO-based object detection in heterogeneous surgical environments. UltraFlwr is publicly available at this https URL.
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM), where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.
The deployment of large language models (LLMs) for next-generation network optimization introduces novel data governance challenges. mobile network operators (MNOs) increasingly leverage generative artificial intelligence (AI) for traffic prediction, anomaly detection, and service personalization, requiring access to users' sensitive network usage data-including mobility patterns, traffic types, and location histories. Under the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and similar regulations, users retain the right to withdraw consent and demand data deletion. However, extensive machine unlearning degrades model accuracy and incurs substantial computational costs, ultimately harming network performance for all users. We propose an iterative price discovery mechanism enabling MNOs to compensate users for data retention through sequential price quotations. The server progressively raises the unit price for retaining data while users independently determine their supply at each quoted price. This approach requires no prior knowledge of users' privacy preferences and efficiently maximizes social welfare across the network ecosystem.
Genome sequence analysis, which examines the DNA sequences of organisms, drives advances in many critical medical and biotechnological fields. Given its importance and the exponentially growing volumes of genomic sequence data, there are extensive efforts to accelerate genome sequence analysis. In this work, we demonstrate a major bottleneck that greatly limits and diminishes the benefits of state-of-the-art genome sequence analysis accelerators: the data preparation bottleneck, where genomic sequence data is stored in compressed form and needs to be first decompressed and formatted before an accelerator can operate on it. To mitigate this bottleneck, we propose SAGe, an algorithm-architecture co-design for highly-compressed storage and high-performance access of large-scale genomic sequence data. The key challenge is to improve data preparation performance while maintaining high compression ratios (comparable to genomic-specific compression algorithms) at low hardware cost. We address this challenge by leveraging key properties of genomic datasets to co-design (i) a lossless (de)compression algorithm, (ii) hardware that decompresses data with lightweight operations and efficient streaming accesses, (iii) storage data layout, and (iv) interface commands to access data. SAGe is highly versatile, as it supports datasets from different sequencing technologies and species. Due to its lightweight design, SAGe can be seamlessly integrated with a broad range of hardware accelerators for genome sequence analysis to mitigate their data preparation bottlenecks. Our results demonstrate that SAGe improves the average end-to-end performance and energy efficiency of two state-of-the-art genome sequence analysis accelerators by 3.0x-32.1x and 13.0x-34.0x, respectively, compared to when the accelerators rely on state-of-the-art software and hardware decompression tools.
Chemotaxis models describe the movement of organisms in response to chemical gradients. In this paper, we present a stochastic interacting particle-field algorithm with a random batch approximation (SIPF-$r$) for the three-dimensional (3D) parabolic-parabolic Keller-Segel (KS) system, also referred to as the fully parabolic KS system. The SIPF-$r$ method approximates the KS system by coupling particle-based representations of the density with a smooth field variable computed using spectral methods. By incorporating the random batch method (RBM), we bypass the mean-field limit and significantly reduce computational complexity. Under mild assumptions on the regularity of the original KS system and the boundedness of numerical approximations, we prove that the empirical measure of the SIPF-$r$ particle system converges, with high probability, to the exact measure of the limiting McKean-Vlasov process in the $1$-Wasserstein distance. Finally, we present numerical experiments to validate the theoretical convergence rates, and demonstrate the performance and robustness of the SIPF-$r$ method as a diagnostic tool for intense focusing and potential finite-time singularity in 3D, subject to critical initial mass thresholds in the system.
The Skolem Problem asks to determine whether a given linear recurrence sequence (LRS) has a zero term. Showing decidability of this problem is equivalent to giving an effective proof of the Skolem-Mahler-Lech Theorem, which asserts that a non-degenerate LRS has finitely many zeros. The latter result was proven over 90 years ago via an ineffective method showing that such an LRS has only finitely many $p$-adic zeros. In this paper we consider the problem of determining whether a given LRS has a $p$-adic zero, as well as the corresponding function problem of computing exact representations of all $p$-adic zeros. We present algorithms for both problems and report on their implementation. The output of the algorithms is unconditionally correct, and termination is guaranteed subject to the $p$-adic Schanuel Conjecture (a standard number-theoretic hypothesis concerning the $p$-adic exponential function). While these algorithms do not solve the Skolem Problem, they can be exploited to find natural-number and rational zeros under additional hypotheses. To illustrate this, we apply our results to show decidability of the Simultaneous Skolem Problem (determine whether two coprime linear recurrences have a common natural-number zero), again subject to the $p$-adic Schanuel Conjecture.
The paper extends the expectation transformer based analysis of higher-order probabilistic programs to the quantum higher-order setting. The quantum language we are considering can be seen as an extension of PCF, featuring unbounded recursion. The language admits classical and quantum data, as well as a tick operator to account for costs. Our quantum expectation transformer translates such programs into a functional, non-quantum language, enriched with a type and operations over so called cost-structures. By specializing the cost-structure, this methodology makes it possible to study several expectation based properties of quantum programs, such as average case cost, probabilities of events or expected values, in terms of the translated non-quantum programs, this way enabling classical reasoning techniques. As a show-case, we adapt a refinement type system, capable of reasoning on upper-bounds.
Side-channel attacks (SCAs) pose a serious threat to system security by extracting secret keys through physical leakages such as power consumption, timing variations, and electromagnetic emissions. Among existing countermeasures, artificial noise injection is recognized as one of the most effective techniques. However, its high power consumption poses a major challenge for resource-constrained systems such as Internet of Things (IoT) devices, motivating the development of more efficient protection schemes. In this paper, we model SCAs as a communication channel and aim to suppress information leakage by minimizing the mutual information between the secret information and side-channel observations, subject to a power constraint on the artificial noise. We propose an optimal artificial noise injection method that minimizes the mutual information under power constraints for artificial noise. Specifically, we formulate two convex optimization problems: 1) minimizing the total mutual information, and 2) minimizing the maximum mutual information across observations. Our first major contribution is proposing an optimal artificial noise injection framework for the case of Gaussian input, where the mutual information becomes the channel capacity, which is one way to quantify the information leakage. Our second major contribution extends the optimization framework to arbitrary input distributions. We identify conditions ensuring the convexity of the optimization problem and derive the optimal solution using the fundamental relationship between the mutual information and the minimum mean squared error. The simulation results show that the proposed methods significantly reduce both total and maximum mutual information compared to conventional techniques, confirming their effectiveness for resource-constrained, security-critical systems.
We propose Derivative Learning (DERL), a supervised approach that models physical systems by learning their partial derivatives. We also leverage DERL to build physical models incrementally, by designing a distillation protocol that effectively transfers knowledge from a pre-trained model to a student one. We provide theoretical guarantees that DERL can learn the true physical system, being consistent with the underlying physical laws, even when using empirical derivatives. DERL outperforms state-of-the-art methods in generalizing an ODE to unseen initial conditions and a parametric PDE to unseen parameters. We also design a method based on DERL to transfer physical knowledge across models by extending them to new portions of the physical domain and a new range of PDE parameters. This introduces a new pipeline to build physical models incrementally in multiple stages.
While 3D IC technology has been extensively explored for ASICs, their application to FPGAs remains limited. Existing studies on 3D FPGAs are often constrained to fixed prototypes, narrow architectural templates, and simulation-only evaluations. In this work, we present LaZagna, the first open-source framework for automated, end-to-end 3D FPGA architecture generation and evaluation. LaZagna supports high-level architectural specification, synthesizable RTL generation, and bitstream production, enabling comprehensive validation of 3D FPGA designs beyond simulation. It significantly broadens the design space compared to prior work by introducing customizable vertical interconnect patterns, novel 3D switch block designs, and support for heterogeneous logic layers. The framework also incorporates practical design constraints such as inter-layer via density and vertical interconnect delay. We demonstrate the capabilities of LaZagna by generating synthesizable RTL that can be taken through full physical design flows for fabric generation, along with functionally correct bitstreams. Furthermore, we conduct five case studies that explore various architectural parameters and evaluate their impact on wirelength, critical path delay, and routing runtime. These studies showcase the framework's scalability, flexibility, and effectiveness in guiding future 3D FPGA architectural and packaging decisions. LaZagna is fully open-source and available on GitHub.
Multi-contrast super-resolution (MCSR) is crucial for enhancing MRI but current deep learning methods are limited. They typically require large, paired low- and high-resolution (LR/HR) training datasets, which are scarce, and are trained for fixed upsampling scales. While recent self-supervised methods remove the paired data requirement, they fail to leverage valuable population-level priors. In this work, we propose a novel, decoupled MCSR framework that resolves both limitations. We reformulate MCSR into two stages: (1) an unpaired cross-modal synthesis (uCMS) module, trained once on unpaired population data to learn a robust anatomical prior; and (2) a lightweight, patient-specific implicit re-representation (IrR) module. This IrR module is optimized in a self-supervised manner to fuse the population prior with the subject's own LR target data. This design uniquely fuses population-level knowledge with patient-specific fidelity without requiring any paired LR/HR or paired cross-modal training data. By building the IrR module on an implicit neural representation, our framework is also inherently scale-agnostic. Our method demonstrates superior quantitative performance on different datasets, with exceptional robustness at extreme scales (16x, 32x), a regime where competing methods fail. Our work presents a data-efficient, flexible, and computationally lightweight paradigm for MCSR, enabling high-fidelity, arbitrary-scale
Reliable perception remains a key challenge for Connected Automated Vehicles (CAVs) in complex real-world environments, where varying lighting conditions and adverse weather degrade sensing performance. While existing multi-sensor solutions improve local robustness, they remain constrained by limited sensing range, line-of-sight occlusions, and sensor failures on individual vehicles. This paper introduces VALISENS, a validated cooperative perception system that extends multi-sensor fusion beyond a single vehicle through Vehicle-to-Everything (V2X)-enabled collaboration between Connected Automated Vehicles (CAVs) and intelligent infrastructure. VALISENS integrates onboard and roadside LiDARs, radars, RGB cameras, and thermal cameras within a unified multi-agent perception framework. Thermal cameras enhances the detection of Vulnerable Road Users (VRUs) under challenging lighting conditions, while roadside sensors reduce occlusions and expand the effective perception range. In addition, an integrated sensor monitoring module continuously assesses sensor health and detects anomalies before system degradation occurs. The proposed system is implemented and evaluated in a dedicated real-world testbed. Experimental results show that VALISENS improves pedestrian situational awareness by up to 18% compared with vehicle-only sensing, while the sensor monitoring module achieves over 97% accuracy, demonstrating its effectiveness and its potential to support future Cooperative Intelligent Transport Systems (C-ITS) applications.
Due to the deformability of garments, generating a large amount of high-quality data for robotic garment manipulation tasks is highly challenging. In this paper, we present a synthetic garment dataset that can be used for robotic garment folding. We begin by constructing geometric garment templates based on keypoints and applying generative models to generate realistic texture patterns. Leveraging these keypoint annotations, we generate folding demonstrations in simulation and train folding policies via closed-loop imitation learning. To improve robustness, we propose KG-DAgger, which uses a keypoint-based strategy to generate demonstration data for recovering from failures. KG-DAgger significantly improves the model performance, boosting the real-world success rate by 25\%. After training with 15K trajectories (about 2M image-action pairs), the model achieves a 75\% success rate in the real world. Experiments in both simulation and real-world settings validate the effectiveness of our proposed framework.
The introduction of 3D Gaussian blendshapes has enabled the real-time reconstruction of animatable head avatars from monocular video. Toonify, a StyleGAN-based method, has become widely used for facial image stylization. To extend Toonify for synthesizing diverse stylized 3D head avatars using Gaussian blendshapes, we propose an efficient two-stage framework, ToonifyGB. In Stage 1 (stylized video generation), we adopt an improved StyleGAN to generate the stylized video from the input video frames, which overcomes the limitation of cropping aligned faces at a fixed resolution as preprocessing for normal StyleGAN. This process provides a more stable stylized video, which enables Gaussian blendshapes to better capture the high-frequency details of the video frames, facilitating the synthesis of high-quality animations in the next stage. In Stage 2 (Gaussian blendshapes synthesis), our method learns a stylized neutral head model and a set of expression blendshapes from the generated stylized video. By combining the neutral head model with expression blendshapes, ToonifyGB can efficiently render stylized avatars with arbitrary expressions. We validate the effectiveness of ToonifyGB on benchmark datasets using two representative styles: Arcane and Pixar.
High temperatures and structural deformations can compromise the functionality and reliability of new components for mechatronic systems. Therefore, high-fidelity simulations (HFS) are employed during the design process, as they enable a detailed analysis of the thermal and structural behavior of the system. However, such simulations are both computationally expensive and tedious, particularly during iterative optimization procedures. Establishing a parametric reduced order model (pROM) can accelerate the design's optimization if the model can accurately predict the behavior over a wide range of material and geometric properties. However, many existing methods exhibit limitations when applied to wide design ranges. In this work, we introduce the parametric Box Reduction (pBR) method, a matrix interpolation technique that minimizes the non-physical influence of training points due to the large parameter ranges. For this purpose, we define a new interpolation function that computes a local weight for each design variable and integrates them into the global function. Furthermore, we develop an intuitive clustering technique to select the training points for the model, avoiding numerical artifacts from distant points. Additionally, these two strategies do not require normalizing the parameter space and handle every property equally. The effectiveness of the pBR method is validated through two physical applications: structural deformation of a cantilever Timoshenko beam and heat transfer of a power module of a power converter. The results demonstrate that the pBR approach can accurately capture the behavior of mechatronic components across large parameter ranges without sacrificing computational efficiency.
Information theory is a powerful framework for quantifying complexity, uncertainty, and dynamical structure in time-series data, with widespread applicability across disciplines such as physics, finance, and neuroscience. However, the literature on these measures remains fragmented, with domain-specific terminologies, inconsistent mathematical notation, and disparate visualization conventions that hinder interdisciplinary integration. This work addresses these challenges by unifying key information-theoretic time-series measures through shared semantic definitions, standardized mathematical notation, and cohesive visual representations. We compare these measures in terms of their theoretical foundations, computational formulations, and practical interpretability -- mapping them onto a common conceptual space through an illustrative case study with functional magnetic resonance imaging time series in the brain. This case study exemplifies the complementary insights these measures offer in characterizing the dynamics of complex neural systems, such as signal complexity and information flow. By providing a structured synthesis, our work aims to enhance interdisciplinary dialogue and methodological adoption, which is particularly critical for reproducibility and interoperability in computational neuroscience. More broadly, our framework serves as a resource for researchers seeking to navigate and apply information-theoretic time-series measures to diverse complex systems.
We revisit the classical problem of Bayesian ensembles and address the challenge of learning optimal combinations of Bayesian models in an online, continual learning setting. To this end, we reinterpret existing approaches such as Bayesian model averaging (BMA) and Bayesian stacking through a novel empirical Bayes lens, shedding new light on the limitations and pathologies of BMA. Further motivated by insights from online optimization, we propose Online Bayesian Stacking (OBS), a method that optimizes the log-score over predictive distributions to adaptively combine Bayesian models. A key contribution of our work is establishing a novel connection between OBS and portfolio selection, bridging Bayesian ensemble learning with a rich, well-studied theoretical framework that offers efficient algorithms and extensive regret analysis. We further clarify the relationship between OBS and online BMA, showing that they optimize related but distinct cost functions. Through theoretical analysis and empirical evaluation, we identify scenarios where OBS outperforms online BMA and provide principled methods and guidance on when practitioners should prefer one approach over the other.
Sparse autoencoders (SAEs) are commonly used to interpret the internal activations of large language models (LLMs) by mapping them to human-interpretable concept representations. While existing evaluations of SAEs focus on metrics such as the reconstruction-sparsity tradeoff, human (auto-)interpretability, and feature disentanglement, they overlook a critical aspect: the robustness of concept representations to input perturbations. We argue that robustness must be a fundamental consideration for concept representations, reflecting the fidelity of concept labeling. To this end, we formulate robustness quantification as input-space optimization problems and develop a comprehensive evaluation framework featuring realistic scenarios in which adversarial perturbations are crafted to manipulate SAE representations. Empirically, we find that tiny adversarial input perturbations can effectively manipulate concept-based interpretations in most scenarios without notably affecting the base LLM's activations. Overall, our results suggest that SAE concept representations are fragile and without further denoising or postprocessing they might be ill-suited for applications in model monitoring and oversight.
Large language models (LLMs) are used worldwide, yet exhibit Western cultural tendencies. Many countries are now building ``regional'' or ``sovereign'' LLMs, but it remains unclear whether they reflect local values and practices or merely speak local languages. Using India as a case study, we evaluate six Indic and six global LLMs on two dimensions -- values and practices -- grounded in nationally representative surveys and community-sourced QA datasets. Across tasks, Indic models do not align better with Indian norms than global models; in fact, a U.S. respondent is a closer proxy for Indian values than any Indic model. We further run a user study with 115 Indian users and find that writing suggestions from both global and Indic LLMs introduce Westernized or exoticized writing. Prompting and regional fine-tuning fail to recover alignment and can even degrade existing knowledge. We attribute this to scarce culturally grounded data, especially for pretraining. We position cultural evaluation as a first-class requirement alongside multilingual benchmarks and offer a reusable, community-grounded methodology. We call for native, community-authored corpora and thickxwide evaluations to build truly sovereign LLMs.
Systematic reviews in medicine play a critical role in evidence-based decision-making by aggregating findings from multiple studies. A central bottleneck in automating this process is extracting numeric evidence and determining study-level conclusions for specific outcomes and comparisons. Prior work has framed this problem as a textual inference task by retrieving relevant content fragments and inferring conclusions from them. However, such approaches often rely on shallow textual cues and fail to capture the underlying numeric reasoning behind expert assessments. In this work, we conceptualise the problem as one of quantitative reasoning. Rather than inferring conclusions from surface text, we extract structured numerical evidence (e.g., event counts or standard deviations) and apply domain knowledge informed logic to derive outcome-specific conclusions. We develop a numeric reasoning system composed of a numeric data extraction model and an effect estimate component, enabling more accurate and interpretable inference aligned with the domain expert principles. We train the numeric data extraction model using different strategies, including supervised fine-tuning (SFT) and reinforcement learning (RL) with a new value reward model. When evaluated on the CochraneForest benchmark, our best-performing approach -- using RL to train a small-scale number extraction model -- yields up to a 21% absolute improvement in F1 score over retrieval-based systems and outperforms general-purpose LLMs of over 400B parameters by up to 9% on the RCTs benchmark. Our results demonstrate the promise of reasoning-driven approaches for automating systematic evidence synthesis.
When using the finite element method (FEM) in inverse problems, its discretization error can produce parameter estimates that are inaccurate and overconfident. The Bayesian finite element method (BFEM) provides a probabilistic model for the epistemic uncertainty due to discretization error. In this work, we apply BFEM to various inverse problems, and compare its performance to the random mesh finite element method (RM-FEM) and the statistical finite element method (statFEM), which serve as a frequentist and inference-based counterpart to BFEM. We find that by propagating this uncertainty to the posterior, BFEM can produce more accurate parameter estimates and prevent overconfidence, compared to FEM. Because the BFEM covariance operator is designed to leave uncertainty only in the appropriate space, orthogonal to the FEM basis, BFEM is able to outperform RM-FEM, which does not have such a structure to its covariance. Although inferring the discretization error via a model misspecification component is possible as well, as is done in statFEM, the feasibility of such an approach is contingent on the availability of sufficient data. We find that the BFEM is the most robust way to consistently propagate uncertainty due to discretization error to the posterior of a Bayesian inverse problem.
Recently, knowledge editing (KE) has emerged as a promising approach to update specific facts in Large Language Models (LLMs) without the need for full retraining. Despite the effectiveness in general-domain benchmarks, their applicability to complex medical domain remains largely unexplored. Medical knowledge editing is particularly challenging, as it requires LLMs to internalize the knowledge and generalize to unseen scenarios for effective and interpretable decision-making. In this work, we propose a novel framework called MedEditBench to rigorously evaluate the effectiveness of existing KE methods in the medical domain. In MedEditBench, we introduce a new medical knowledge editing benchmark as well as three different knowledge editing paradigms, which are designed to assess the impact of different knowledge sources for editing. Our findings indicate that current KE methods result in only superficial memorization of the injected information, failing to generalize to new scenarios. To overcome this limitation, we present Self-Generated Rationale Editing (SGR-Edit), which utilizes model-derived rationales as the target knowledge for editing, thereby uncovering the underlying reasoning process and demonstrating significant improvements over existing KE approaches. Additionally, we offer deeper insights into medical knowledge editing, including the localization of medical knowledge in LLMs and the impact of sequential editing on evolving knowledge. This could provide practical guidance for implementing KE methods in real-world medical applications.
Evaluating text revision in scientific writing remains a challenge, as traditional metrics such as ROUGE and BERTScore primarily focus on similarity rather than capturing meaningful improvements. In this work, we analyse and identify the limitations of these metrics and explore alternative evaluation methods that better align with human judgments. We first conduct a manual annotation study to assess the quality of different revisions. Then, we investigate reference-free evaluation metrics from related NLP domains. Additionally, we examine LLM-as-a-judge approaches, analysing their ability to assess revisions with and without a gold reference. Our results show that LLMs effectively assess instruction-following but struggle with correctness, while domain-specific metrics provide complementary insights. We find that a hybrid approach combining LLM-as-a-judge evaluation and task-specific metrics offers the most reliable assessment of revision quality.
Inductive logic programming (ILP) is a form of logical machine learning. The goal is to search a hypothesis space for a hypothesis that generalises training examples and background knowledge. We introduce an approach that 'shrinks' the hypothesis space before an ILP system searches it. Our approach uses background knowledge to find rules that cannot be in an optimal hypothesis regardless of the training examples. For instance, our approach discovers relationships such as "even numbers cannot be odd" and "prime numbers greater than 2 are odd". It then removes violating rules from the hypothesis space. We implement our approach using answer set programming and use it to shrink the hypothesis space of a constraint-based ILP system. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can substantially reduce learning times whilst maintaining predictive accuracies. For instance, given just 10 seconds of preprocessing time, our approach can reduce learning times from over 10 hours to only 2 seconds.
Autocrats use secret police to stay in power, as these organizations deter and suppress opposition to their rule. Existing research shows that secret police succeed at this but, surprisingly, also that they are not as ubiquitous in autocracies as one may assume, existing in fewer than half of autocratic country-years. We thus explore under which conditions secret police emerge in dictatorships. For this purpose, we develop a theoretical framework for potential predictors and apply statistical variable selection techniques to identify which of several candidate variables extracted from the literature on state security forces and authoritarian survival hold explanatory power. Our results highlight that secret police are more likely to emerge when rulers face structural, regime-external threats, such as organised anti-system mobilisation and international rivals, or witness successful regime-internal contestation abroad that hints at similar threats at home. But additionally, we find that rulers must have sufficient material resources and personalised power to establish secret police. This research contributes to our understanding of autocrats' institutional choices and authoritarian politics.
This paper develops an interpretable, non-intrusive reduced-order modeling technique using regularized kernel interpolation. Existing non-intrusive approaches approximate the dynamics of a reduced-order model (ROM) by solving a data-driven least-squares regression problem for low-dimensional matrix operators. Our approach instead leverages regularized kernel interpolation, which yields an optimal approximation of the ROM dynamics from a user-defined reproducing kernel Hilbert space. We show that our kernel-based approach can produce interpretable ROMs whose structure mirrors full-order model structure by embedding judiciously chosen feature maps into the kernel. The approach is flexible and allows a combination of informed structure through feature maps and closure terms via more general nonlinear terms in the kernel. We also derive a computable a posteriori error bound that combines standard error estimates for intrusive projection-based ROMs and kernel interpolants. The approach is demonstrated in several numerical experiments that include comparisons to operator inference using both proper orthogonal decomposition and quadratic manifold dimension reduction.
Monitoring is an important aspect of safely deploying Large Language Models (LLMs). This paper examines activation probes for detecting ``high-stakes'' interactions -- where the text indicates that the interaction might lead to significant harm -- as a critical, yet underexplored, target for such monitoring. We evaluate several probe architectures trained on synthetic data, and find them to exhibit robust generalization to diverse, out-of-distribution, real-world data. Probes' performance is comparable to that of prompted or finetuned medium-sized LLM monitors, while offering computational savings of six orders-of-magnitude. These savings are enabled by reusing activations of the model that is being monitored. Our experiments also highlight the potential of building resource-aware hierarchical monitoring systems, where probes serve as an efficient initial filter and flag cases for more expensive downstream analysis. We release our novel synthetic dataset and the codebase at this https URL.
Large Language Models (LLMs) have shown promise in various tasks, yet few benchmarks assess their capabilities in embedded system development. In this paper, we introduce EmbedAgent, a paradigm designed to simulate real-world roles in embedded system development, such as Embedded System Programmer, Architect, and Integrator. This paradigm enables LLMs to be tested in tasks that bridge the gap between digital and physical systems, allowing for a more comprehensive assessment of their capabilities. To evaluate LLMs on these tasks, we propose Embedbench, the first comprehensive benchmark for embedded system programming, circuit design, and cross-platform migration. Embedbench consists of 126 cases, covering 9 electronic components across 3 hardware platforms. Through extensive experiments on 10 mainstream LLMs, we uncover several key findings. Surprisingly, despite the simplicity of the cases, DeepSeek-R1 achieves only a 55.6% pass@1 rate when provided with schematic information, and 50.0% when tasked with generating the schematics itself. In the cross-platform migration tasks, LLMs show relatively strong performance with MicroPython on the Raspberry Pi Pico (with the top model achieving 73.8% pass@1), but perform poorly on ESP-IDF, where the best model reaches only 29.4% pass@1. Interestingly, we observe that general-purpose chat LLMs like DeepSeek-V3 often fail to utilize relevant pre-trained knowledge in this domain, while reasoning LLMs tend to overthink and overlook efficient knowledge during pretraining. Based on these insights, we propose two strategies: retrieval augmented generation and compiler feedback-to enhance LLM performance. These strategies result in significant improvements, with Deepseek-R1 reaching a 65.1% pass@1 with correct schematics, and 53.1% without. Additionally, the accuracy of the Arduino to ESP32 migration task improves from 21.4% to 27.8%.
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic this http URL on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: this https URL
Time-fractional semilinear and quasilinear parabolic equations with a Caputo time derivative of order $\alpha\in(0,1)$ are considered, solutions of which exhibit a singular behaviour at an initial time of type $t^\sigma$ for any fixed $\sigma \in (0,1) \cup (1,2)$. The L1 scheme in time is combined with a general class of discretizations for the semilinear term. For such discretizations, we obtain sharp pointwise-in-time error bounds on graded temporal meshes with arbitrary degree of grading. Both semi-discretizations in time and full discretizations using finite differences and finite elements in space are addressed. The theoretcal findings are illustrated by numerical experiments.
We propose and study Hierarchical Ego Graph Neural Networks (HEGNNs), an expressive extension of graph neural networks (GNNs) with hierarchical node individualization, inspired by the Individualization-Refinement paradigm for isomorphism testing. HEGNNs generalize subgraph-GNNs and form a hierarchy of increasingly expressive models that, in the limit, distinguish graphs up to isomorphism. We show that, over graphs of bounded degree, the separating power of HEGNN node classifiers equals that of graded hybrid logic. This characterization enables us to relate the separating power of HEGNNs to that of higher-order GNNs, GNNs enriched with local homomorphism count features, and color refinement algorithms based on Individualization-Refinement. Our experimental results confirm the practical feasibility of HEGNNs and show benefits in comparison with traditional GNN architectures, both with and without local homomorphism count features.
Over the past decade, policymakers have developed a set of regulatory tools to ensure AI development aligns with key societal goals. Many of these tools were initially developed in response to concerns with task-specific AI and therefore encode certain assumptions about the nature of AI systems and the utility of certain regulatory approaches. With the advent of general-purpose AI (GPAI), however, some of these assumptions no longer hold, even as policymakers attempt to maintain a single regulatory target that covers both types of AI. In this paper, we identify four distinct aspects of GPAI that call for meaningfully different policy responses. These are the generality and adaptability of GPAI that make it a poor regulatory target, the difficulty of designing effective evaluations, new legal concerns that change the ecosystem of stakeholders and sources of expertise, and the distributed structure of the GPAI value chain. In light of these distinctions, policymakers will need to evaluate where the past decade of policy work remains relevant and where new policies, designed to address the unique risks posed by GPAI, are necessary. We outline three recommendations for policymakers to more effectively identify regulatory targets and leverage constraints across the broader ecosystem to govern GPAI.
Neuro-fuzzy networks (NFNs) are transparent, symbolic, and universal function approximations that perform as well as conventional neural architectures, but their knowledge is expressed as linguistic IF-THEN rules. Despite these advantages, their systematic design process remains a challenge. Existing work will often sequentially build NFNs by inefficiently isolating parametric and structural identification, leading to a premature commitment to brittle and subpar architecture. We propose a novel application-independent approach called gradient-based neuroplastic adaptation for the concurrent optimization of NFNs' parameters and structure. By recognizing that NFNs' parameters and structure should be optimized simultaneously as they are deeply conjoined, settings previously unapproachable for NFNs are now accessible, such as the online reinforcement learning of NFNs for vision-based tasks. The effectiveness of concurrently optimizing NFNs is empirically shown as it is trained by online reinforcement learning to proficiently play challenging scenarios from a vision-based video game called DOOM.
Breakthroughs in visual odometry (VO) have fundamentally reshaped the landscape of robotics, enabling ultra-precise camera state estimation that is crucial for modern autonomous systems. Despite these advances, many learning-based VO techniques rely on rigid geometric assumptions, which often fall short in interpretability and lack a solid theoretical basis within fully data-driven frameworks. To overcome these limitations, we introduce VOCAL (Visual Odometry via ContrAstive Learning), a novel framework that reimagines VO as a label ranking challenge. By integrating Bayesian inference with a representation learning framework, VOCAL organizes visual features to mirror camera states. The ranking mechanism compels similar camera states to converge into consistent and spatially coherent representations within the latent space. This strategic alignment not only bolsters the interpretability of the learned features but also ensures compatibility with multimodal data sources. Extensive evaluations on the KITTI dataset highlight VOCAL's enhanced interpretability and flexibility, pushing VO toward more general and explainable spatial intelligence.
The gap between static benchmarks and the dynamic nature of real-world legal practice poses a key barrier to advancing legal intelligence. To this end, we introduce J1-ENVS, the first interactive and dynamic legal environment tailored for LLM-based agents. Guided by legal experts, it comprises six representative scenarios from Chinese legal practices across three levels of environmental complexity. We further introduce J1-EVAL, a fine-grained evaluation framework, designed to assess both task performance and procedural compliance across varying levels of legal proficiency. Extensive experiments on 17 LLM agents reveal that, while many models demonstrate solid legal knowledge, they struggle with procedural execution in dynamic settings. Even the SOTA model, GPT-4o, falls short of 60% overall performance. These findings highlight persistent challenges in achieving dynamic legal intelligence and offer valuable insights to guide future research.
While diffusion model fine-tuning offers a powerful approach for customizing pre-trained models to generate specific objects, it frequently suffers from overfitting when training samples are limited, compromising both generalization capability and output diversity. This paper tackles the challenging yet most impactful task of adapting a diffusion model using just a single concept image, as single-image customization holds the greatest practical potential. We introduce T-LoRA, a Timestep-Dependent Low-Rank Adaptation framework specifically designed for diffusion model personalization. We show that higher diffusion timesteps are more prone to overfitting than lower ones, necessitating a timestep-sensitive fine-tuning strategy. T-LoRA incorporates two key innovations: (1) a dynamic fine-tuning strategy that adjusts rank-constrained updates based on diffusion timesteps, and (2) a weight parametrization technique that ensures independence between adapter components through orthogonal initialization. Extensive experiments on SD-XL and this http URL show that T-LoRA and its individual components outperform standard LoRA and other diffusion model personalization techniques, achieving a superior balance between concept fidelity and text alignment. Project page is available at this https URL.
This paper experimentally analyzes the negative impact of contention caused by neighboring Wi-Fi networks operating on overlapping channels on Virtual Reality (VR) streaming over Wi-Fi, focusing on scenarios of partial and full channel overlap within an 80 MHz channel. Our results show that (i) increasing the number of 80 MHz Overlapping Basic Service Sets (OBSSs) intensifies contention and degrades VR streaming performance; (ii) OBSS activity on the secondary-sided 40 MHz portion degrades performance more than activity on the primary-sided 40 MHz portion; (iii) for the same aggregate load, full channel overlap with two 40 MHz OBSS contenders is less detrimental than partial overlap with a single high-load 40 MHz contender, but more disruptive than full overlap with two 80 MHz contenders; and (iv) full channel overlap with two 40 MHz OBSS contenders has a smaller impact on VR streaming under symmetric traffic loads than under asymmetric loads. Moreover, our results demonstrate that our previously proposed Network-aware Step-wise adaptive bitrate algorithm for VR streaming (NeSt-VR) effectively mitigates performance degradation in OBSS environments, enabling VR streaming under heavier OBSS traffic conditions.
Soft continuum arms (SCAs) promise versatile manipulation through mechanical compliance, for assistive devices, agriculture, search applications, or surgery. However, the strong nonlinear coupling between materials, morphology, and actuation renders design and control challenging, hindering real-world deployment. In this context, a modular fabrication strategy paired with reliable, interactive simulations would be highly beneficial, streamlining prototyping and control design. Here, we present a digital twin framework for modular SCAs realized using pneumatic Fiber-Reinforced Elastomeric Enclosures (FREEs). The approach models assemblies of FREE actuators through networks of Cosserat rods, favoring the accurate simulation of three-dimensional arm reconfigurations, while explicitly preserving internal modular architecture. This enables the quantitative analysis and scalable development of composite soft robot arms, overcoming limitations of current monolithic continuum models. To validate the framework, we introduce a three-dimensional reconstruction pipeline tailored to soft, slender, small-volume, and highly deformable structures, allowing reliable recovery of arm kinematics and strain distributions. Experimental results across multiple configurations and actuation regimes demonstrate close agreement with simulations. Finally, we embed the digital twins in a virtual environment to allow interactive control design and sim-to-real deployment, establishing a foundation for principled co-design and remote operation of modular soft continuum manipulators.
Real-world pricing mechanisms are typically optimized using training data, a setting corresponding to the \textit{pricing query complexity} problem in Mechanism Design. The previous work [LSTW23] studies the \textit{single-distribution} case, with tight bounds of $\widetilde{\Theta}(\varepsilon^{-3})$ for a \textit{general} distribution and $\widetilde{\Theta}(\varepsilon^{-2})$ for either a \textit{regular} or \textit{monotone-hazard-rate (MHR)} distribution, where $\varepsilon \in (0, 1)$ denotes the (additive) revenue loss of a learned uniform price relative to the Bayesian-optimal uniform price. This can be directly interpreted as ``the query complexity of the {\em \textsf{Uniform Pricing}} mechanism, in the \textit{single-distribution} case''. Yet in the \textit{multi-distribution} case, can the regularity and MHR conditions still lead to improvements over the tight bound $\widetilde{\Theta}(\varepsilon^{-3})$ for general distributions? We answer this question in the negative, by establishing a (near-)matching lower bound $\Omega(\varepsilon^{-3})$ for either \textit{two regular distributions} or \textit{three MHR distributions}. We also address the \textit{regret minimization} problem and, in comparison with the folklore upper bound $\widetilde{O}(T^{2 / 3})$ for general distributions (see, e.g., [SW24]), establish a (near-)matching lower bound $\Omega(T^{2 / 3})$ for either \textit{two regular distributions} or \textit{three MHR distributions}, via a black-box reduction. Again, this is in stark contrast to the tight bound $\widetilde{\Theta}(T^{1 / 2})$ for a single regular or MHR distribution.
Time-dependent partial differential equations are ubiquitous in physics-based modeling, but they remain computationally intensive in many-query scenarios, such as real-time forecasting, optimal control, and uncertainty quantification. Reduced-order modeling (ROM) addresses these challenges by constructing a low-dimensional surrogate model but relies on a fixed discretization, which limits flexibility across varying meshes during evaluation. Operator learning approaches, such as neural operators, offer an alternative by parameterizing mappings between infinite-dimensional function spaces, enabling adaptation to data across different resolutions. Whereas ROM provides rigorous numerical error estimates, neural operator learning largely focuses on discretization convergence and invariance without quantifying the error between the infinite-dimensional and the discretized operators. This work introduces the reduced-order neural operator modeling (RONOM) framework, which bridges concepts from ROM and operator learning. We establish a discretization error bound analogous to those in ROM, and get insights into RONOM's discretization convergence and discretization robustness. Moreover, three numerical examples are presented that compare RONOM to existing neural operators for solving partial differential equations. The results demonstrate that RONOM using standard vector-to-vector neural networks can achieve comparable performance in input generalization and achieves superior performance in both spatial super-resolution and discretization robustness, while also offering novel insights into temporal super-resolution scenarios and ROM-based approaches for learning on time-dependent data.
We present NeckSense, a novel wearable system for head pose tracking that leverages multi-channel bio-impedance sensing with soft, dry electrodes embedded in a lightweight, necklace-style form factor. NeckSense captures dynamic changes in tissue impedance around the neck, which are modulated by head rotations and subtle muscle activations. To robustly estimate head pose, we propose a deep learning framework that integrates anatomical priors, including joint constraints and natural head rotation ranges, into the loss function design. We validate NeckSense on 7 participants using the current SOTA pose estimation model as ground truth. Our system achieves a mean per-vertex error of 25.9 mm across various head movements with a leave-one-person-out cross-validation method, demonstrating that a compact, line-of-sight-free bio-impedance wearable can deliver head-tracking performance comparable to SOTA vision-based methods.
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at this https URL.
We demonstrate the effectiveness of the categorical distribution as a neural network output for next event prediction. This is done for both discrete-time and continuous-time event sequences. To model continuous-time processes, the categorical distribution is interpreted as a piecewise-constant density function and is shown to be competitive across a range of datasets. We then argue for the importance of studying discrete-time processes by introducing a neuronal spike prediction task motivated by retinal prosthetics, where discretization of event times is consequent on the task description. Separately, we show evidence that commonly used datasets favour smaller models. Finally, we introduce new synthetic datasets for testing larger models, as well as synthetic datasets with discrete event times.
Deepfakes images can erode trust in institutions and compromise election outcomes, as people often struggle to discern real images from deepfake images. Improving digital literacy can help address these challenges. Here, we compare the efficacy of five digital literacy interventions to boost people's ability to discern deepfakes: (1) textual guidance on common indicators of deepfakes; (2) visual demonstrations of these indicators; (3) a gamified exercise for identifying deepfakes; (4) implicit learning through repeated exposure and feedback; and (5) explanations of how deepfakes are generated with the help of AI. We conducted an experiment with N=1,200 participants from the United States to test the immediate and long-term effectiveness of our interventions. Our results show that our lightweight, easy-to-understand interventions can boost deepfake image discernment by up to 13 percentage points while maintaining trust in real images.
Large language models (LLMs) have enhanced conventional recommendation models via user profiling, which generates representative textual profiles from users' historical interactions. However, their direct application to session-based recommendation (SBR) remains challenging due to severe session context scarcity and poor scalability. In this paper, we propose SPRINT, a scalable SBR framework that incorporates reliable and informative intents while ensuring high efficiency in both training and inference. SPRINT constrains LLM-based profiling with a global intent pool and validates inferred intents based on recommendation performance to mitigate noise and hallucinations under limited context. To ensure scalability, LLMs are selectively invoked only for uncertain sessions during training, while a lightweight intent predictor generalizes intent prediction to all sessions without LLM dependency at inference time. Experiments on real-world datasets show that SPRINT consistently outperforms state-of-the-art methods while providing more explainable recommendations.
Detecting fraudulent auto-insurance claims remains a challenging classification problem, largely due to the extreme imbalance between legitimate and fraudulent cases. Standard learning algorithms tend to overfit to the majority class, resulting in poor detection of economically significant minority events. This paper proposes a structured three-stage training framework that integrates a convex surrogate of focal loss for stable initialization, a controlled non-convex intermediate loss to improve feature discrimination, and the standard focal loss to refine minority-class sensitivity. We derive conditions under which the surrogate retains convexity in the prediction space and show how this facilitates more reliable optimization when combined with deep sequential models. Using a proprietary auto-insurance dataset, the proposed method improves minority-class F1-scores and AUC relative to conventional focal-loss training and resampling baselines. The approach also provides interpretable feature-attribution patterns through SHAP analysis, offering transparency for actuarial and fraud-analytics applications.
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
Lexical semantics is concerned with both the multiple senses a word can adopt in different contexts, and the semantic relations that exist between meanings of different words. To investigate them, Contextualized Language Models are a valuable tool that provides context-sensitive representations that can be used to investigate lexical meaning. Recent works like XL-LEXEME have leveraged the task of Word-in-Context to fine-tune them to get more semantically accurate representations, but Word-in-Context only compares occurrences of the same lemma, limiting the range of captured information. In this paper, we propose an extension, Concept Differentiation, to include inter-words scenarios. We provide a dataset for this task, derived from SemCor data. Then we fine-tune several representation models on this dataset. We call these models Concept-Aligned Embeddings (CALE). By challenging our models and other models on various lexical semantic tasks, we demonstrate that the proposed models provide efficient multi-purpose representations of lexical meaning that reach best performances in our experiments. We also show that CALE's fine-tuning brings valuable changes to the spatial organization of embeddings.
Unifying probabilistic and logical learning is a key challenge in AI. We introduce a Bayesian inductive logic programming approach that learns minimum message length hypotheses from noisy data. Our approach balances hypothesis complexity and data fit through priors, which favour more general programs, and a likelihood, which favours accurate programs. Our experiments on several domains, including game playing and drug design, show that our method significantly outperforms previous methods, notably those that learn minimum description length programs. Our results also show that our approach is data-efficient and insensitive to example balance, including the ability to learn from exclusively positive examples.
The goal of inductive logic programming is to search for a hypothesis that generalises training data and background knowledge. The challenge is searching vast hypothesis spaces, which is exacerbated because many logically equivalent hypotheses exist. To address this challenge, we introduce a method to break symmetries in the hypothesis space. We implement our idea in answer set programming. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce solving times from over an hour to just 17 seconds.
A software engineering issue (SWE issue) is easier to resolve when accompanied by a reproduction test. Unfortunately, most issues do not come with functioning reproduction tests, so this paper explores how to generate them automatically. The primary challenge in this setting is that the code to be tested is either missing or wrong, as evidenced by the existence of the issue in the first place. This has held back test generation for this setting: without the correct code to execute, it is difficult to leverage execution feedback to generate good tests. This paper introduces novel techniques for leveraging execution feedback to get around this problem, implemented in a new reproduction test generator called e-Otter++. Experiments show that e-Otter++ represents a leap ahead in the state-of-the-art for this problem, generating tests with an average fail-to-pass rate of 63% on the TDD-Bench Verified benchmark.
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.
Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assumptions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we also provide consistency guarantees for our framework, reinforcing its theoretical soundness.
Text-driven 3D editing seeks to modify 3D scenes according to textual descriptions, and most existing approaches tackle this by adapting pre-trained 2D image editors to multi-view inputs. However, without explicit control over multi-view information exchange, they often fail to maintain cross-view consistency, leading to insufficient edits and blurry details. We introduce CoreEditor, a novel framework for consistent text-to-3D editing. The key innovation is a correspondence-constrained attention mechanism that enforces precise interactions between pixels expected to remain consistent throughout the diffusion denoising process. Beyond relying solely on geometric alignment, we further incorporate semantic similarity estimated during denoising, enabling more reliable correspondence modeling and robust multi-view editing. In addition, we design a selective editing pipeline that allows users to choose preferred results from multiple candidates, offering greater flexibility and user control. Extensive experiments show that CoreEditor produces high-quality, 3D-consistent edits with sharper details, significantly outperforming prior methods.
Carbon capture and storage (CCS) projects typically involve a diverse array of stakeholders or players from public, private, and regulatory sectors, each with different objectives and responsibilities. Given the complexity, scale, and long-term nature of CCS operations, determining whether individual stakeholders can independently maximize their interests or whether collaborative coalition agreements are needed remains a central question for effective CCS project planning and management. CCS projects are often implemented in geologically connected sites, where shared geological features such as pressure space and reservoir pore capacity can lead to competitive behavior among stakeholders. Furthermore, CO2 storage sites are often located in geologically mature basins that previously served as sites for hydrocarbon extraction or wastewater disposal in order to leverage existing infrastructures, which makes unilateral optimization even more complicated and unrealistic. In this work, we propose a paradigm based on Markov games to quantitatively investigate how different coalition structures affect the goals of stakeholders. We frame this multi-stakeholder multi-site problem as a multi-agent reinforcement learning problem with safety constraints. Our approach enables agents to learn optimal strategies while compliant with safety regulations. We present an example where multiple operators are injecting CO2 into their respective project areas in a geologically connected basin. To address the high computational cost of repeated simulations of high-fidelity models, a previously developed surrogate model based on the Embed-to-Control (E2C) framework is employed. Our results demonstrate the effectiveness of the proposed framework in addressing optimal management of CO2 storage when multiple stakeholders with various objectives and goals are involved.
Communication is essential for the collective execution of complex tasks by human agents, motivating interest in communication mechanisms for multi-agent reinforcement learning (MARL). However, existing communication protocols in MARL are often complex and non-differentiable. In this work, we introduce a self-attention-based communication method that exchanges information between the agents in MARL. Our proposed approach is fully differentiable, allowing agents to learn to generate messages in a reward-driven manner. The method can be seamlessly integrated with any action-value function decomposition algorithm and can be viewed as an orthogonal extension of such decompositions. Notably, it includes a fixed number of trainable parameters, independent of the number of agents, which makes it scalable to large systems. Experimental results on the SMACv2 benchmark demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on a number of maps. makes it scalable to large systems. Experimental results on the SMACv2 benchmark demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on a number of maps.
We introduce VMMU, a Vietnamese Multitask Multimodal Understanding and Reasoning Benchmark designed to evaluate how vision-language models (VLMs) interpret and reason over visual and textual information beyond English. VMMU consists of 2.5k multimodal questions across 7 tasks, covering a diverse range of problem contexts, including STEM problem solving, data interpretation, rule-governed visual reasoning, and abstract visual reasoning. All questions require genuine multimodal integration, rather than reliance on text-only cues or OCR-based shortcuts. We evaluate a diverse set of state-of-the-art proprietary and open-source VLMs on VMMU. Despite strong Vietnamese OCR performance, proprietary models achieve only 66% mean accuracy. Further analysis shows that the primary source of failure is not OCR, but instead multimodal grounding and reasoning over text and visual evidence. Code and data are available at this https URL
Sequential recommendation aims to predict a user's next action in large-scale recommender systems. While traditional methods often suffer from insufficient information interaction, recent generative recommendation models partially address this issue by directly generating item predictions. To better capture user intents, recent studies have introduced a reasoning process into generative recommendation, significantly improving recommendation performance. However, these approaches are constrained by the singularity of item semantic representations, facing challenges such as limited diversity in reasoning pathways and insufficient reliability in the reasoning process. To tackle these issues, we introduce REG4Rec, a reasoning-enhanced generative model that constructs multiple dynamic semantic reasoning paths alongside a self-reflection process, ensuring high-confidence recommendations. Specifically, REG4Rec utilizes an MoE-based parallel quantization codebook (MPQ) to generate multiple unordered semantic tokens for each item, thereby constructing a larger-scale diverse reasoning space. Furthermore, to enhance the reliability of reasoning, we propose a training reasoning enhancement stage, which includes Preference Alignment for Reasoning (PARS) and a Multi-Step Reward Augmentation (MSRA) strategy. PARS uses reward functions tailored for recommendation to enhance reasoning and reflection, while MSRA introduces future multi-step actions to improve overall generalization. During inference, Consistency-Oriented Self-Reflection for Pruning (CORP) is proposed to discard inconsistent reasoning paths, preventing the propagation of erroneous reasoning. Lastly, we develop an efficient offline training strategy for large-scale recommendation. Experiments on real-world datasets and online evaluations show that REG4Rec delivers outstanding performance and substantial practical value.
The rapid proliferation of Generative AI (GenAI) into diverse, high-stakes domains necessitates robust and reproducible evaluation methods. However, practitioners often resort to ad-hoc, non-standardized scripts, as common metrics are often unsuitable for specialized, structured outputs (e.g., automated plans, time-series) or holistic comparison across modalities (e.g., text, audio, and image). This fragmentation hinders comparability and slows AI system development. To address this challenge, we present GAICo (Generative AI Comparator): a deployed, open-source Python library that streamlines and standardizes GenAI output comparison. GAICo provides a unified, extensible framework supporting a comprehensive suite of reference-based metrics for unstructured text, specialized structured data formats, and multimedia (images, audio). Its architecture features a high-level API for rapid, end-to-end analysis, from multi-model comparison to visualization and reporting, alongside direct metric access for granular control. We demonstrate GAICo's utility through a detailed case study evaluating and debugging complex, multi-modal AI Travel Assistant pipelines. GAICo empowers AI researchers and developers to efficiently assess system performance, make evaluation reproducible, improve development velocity, and ultimately build more trustworthy AI systems, aligning with the goal of moving faster and safer in AI deployment. Since its release on PyPI in Jun 2025, the tool has been downloaded over 16K times, across versions, by Dec 2025, demonstrating growing community interest.
Real-time Human Activity Recognition (HAR) has wide-ranging applications in areas such as context-aware environments, public safety, assistive technologies, and autonomous monitoring and surveillance systems. However, existing real-time HAR systems face significant challenges, including limited scalability and high computational costs arising from redundant features. To address these issues, the Inception-V3 model was customized with region-based and boundary-aware operations, using average pooling and max pooling, respectively, to enhance region homogeneity, suppress noise, and capture discriminative local features, while improving robustness through down-sampling. Furthermore, to effectively encode motion dynamics, an Attention-Augmented Long Short-Term Memory (AA-LSTM) network was employed to learn temporal dependencies across video frames. Features are extracted from video dataset and are then optimized through a novel proposed dynamic composite feature selection method called Adaptive Dynamic Fitness Sharing and Attention (ADFSA). This ADFSA mechanism is embedded within a genetic algorithm to select a compact, optimized subset of features by dynamically balancing multiple objectives, accuracy, redundancy reduction, feature uniqueness, and complexity minimization. As a result, the selected subset of diverse and discriminative features enables lightweight machine learning classifiers to achieve accurate and robust HAR in heterogeneous environments. Experimental results demonstrate up to 99.65\% accuracy using as few as seven selected features, with improved inference time on the challenging UCF-YouTube dataset, which includes factors such as occlusion, cluttered backgrounds, complex motion dynamics, and poor illumination conditions.
Large Language Models (LLMs) have demonstrated strong capabilities in web search and reasoning. However, their dependence on static training corpora makes them prone to factual errors and knowledge gaps. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external knowledge sources, especially structured Knowledge Graphs (KGs), which provide explicit semantics and efficient retrieval. Existing KG-based RAG approaches, however, generally assume that anchor entities are accessible to initiate graph traversal, which limits their robustness in open-world settings where accurate linking between the user query and the KG entity is unreliable. To overcome this limitation, we propose AnchorRAG, a novel multi-agent collaboration framework for open-world RAG without the predefined anchor entities. Specifically, a predictor agent dynamically identifies candidate anchor entities by aligning user query terms with KG nodes and initializes independent retriever agents to conduct parallel multi-hop explorations from each candidate. Then a supervisor agent formulates the iterative retrieval strategy for these retriever agents and synthesizes the resulting knowledge paths to generate the final answer. This multi-agent collaboration framework improves retrieval robustness and mitigates the impact of ambiguous or erroneous anchors. Extensive experiments on four public benchmarks demonstrate that AnchorRAG significantly outperforms existing baselines and establishes new state-of-the-art results on the real-world reasoning tasks.
Partial Differential Equations (PDEs) are the bedrock for modern computational sciences and engineering, and inherently computationally expensive. While PDE foundation models have shown much promise for simulating such complex spatio-temporal phenomena, existing models remain constrained by the pretraining datasets and struggle with auto-regressive rollout performance, especially in out-of-distribution (OOD) cases. Furthermore, they have significant compute and training data requirements which hamper their use in many critical applications. Inspired by recent advances in ``thinking" strategies used in large language models (LLMs), we introduce the first test-time computing (TTC) strategy for PDEs that utilizes computational resources during inference to achieve more accurate predictions with fewer training samples and smaller models. We accomplish this with two types of reward models that evaluate predictions of a stochastic based model for spatio-temporal consistency. We demonstrate this method on compressible Euler-equation simulations from the PDEGym benchmark and show that TTC captures improved predictions relative to standard non-adaptive auto-regressive inference. This TTC framework marks a foundational step towards more advanced reasoning algorithms or PDE modeling, inluding building reinforcement-learning-based approaches, potentially transforming computational workflows in physics and engineering.
Bifurcation phenomena in nonlinear dynamical systems often lead to multiple coexisting stable solutions, particularly in the presence of symmetry breaking. Deterministic machine learning models are unable to capture this multiplicity, averaging over solutions and failing to represent lower-symmetry outcomes. In this work, we formalize the use of generative AI, specifically flow matching, as a principled way to model the full probability distribution over bifurcation outcomes. Our approach builds on existing techniques by combining flow matching with equivariant architectures and an optimal-transport-based coupling mechanism. We generalize equivariant flow matching to a symmetric coupling strategy that aligns predicted and target outputs under group actions, allowing accurate learning in equivariant settings. We validate our approach on a range of systems, from simple conceptual systems to physical problems such as buckling beams and the Allen--Cahn equation. The results demonstrate that the approach accurately captures multimodal distributions and symmetry-breaking bifurcations. Moreover, our results demonstrate that flow matching significantly outperforms non-probabilistic and variational methods. This offers a principled and scalable solution for modeling multistability in high-dimensional systems.
As the number of satellites in orbit has increased exponentially in recent years, ensuring their correct functionality has started to require automated methods to decrease human workload. In this work, we present an algorithm that analyzes the on-board data related to friction from the Reaction Wheel Assemblies (RWA) of a satellite and determines their operating status, distinguishing between nominal status and several possible anomalies that require preventive measures to be taken. The algorithm first uses a model based on hybrid systems theory to extract the information relevant to the problem. The extraction process combines techniques in changepoint detection, dynamic programming, and maximum likelihood in a structured way. A classifier then uses the extracted information to determine the status of the RWA. This last classifier has been previously trained with a labelled dataset produced by a high-fidelity simulator, comprised for the most part of nominal data. The final algorithm combines model-based and data-based approaches to obtain satisfactory results with an accuracy around 95%.
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, their reasoning abilities in the multimodal symbolic music domain remain largely unexplored. We introduce WildScore, the first in-the-wild multimodal symbolic music reasoning and analysis benchmark, designed to evaluate MLLMs' capacity to interpret real-world music scores and answer complex musicological queries. Each instance in WildScore is sourced from genuine musical compositions and accompanied by authentic user-generated questions and discussions, capturing the intricacies of practical music analysis. To facilitate systematic evaluation, we propose a systematic taxonomy, comprising both high-level and fine-grained musicological ontologies. Furthermore, we frame complex music reasoning as multiple-choice question answering, enabling controlled and scalable assessment of MLLMs' symbolic music understanding. Empirical benchmarking of state-of-the-art MLLMs on WildScore reveals intriguing patterns in their visual-symbolic reasoning, uncovering both promising directions and persistent challenges for MLLMs in symbolic music reasoning and analysis. We release the dataset and code.
Large language models (LLMs) suffer from catastrophic forgetting in sequential multi-task learning. Existing parameter regularization methods (e.g., O-LoRA, N-LoRA) mitigate interference via low-rank subspace orthogonality, but additive updates distort the intrinsic geometry of model parameters. We propose \textbf{OLieRA}, a Lie group based fine-tuning framework that preserves parameter geometry through multiplicative updates while enforcing orthogonality across task subspaces. OLieRA achieves state-of-the-art performance on the Standard CL benchmark and remains highly competitive under large task sequences. It further inherits the replay-free and task-ID free inference properties of O-LoRA, establishing a principled paradigm for continual learning in LLMs.
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
With generative models becoming increasingly sophisticated and diverse, detecting AI-generated images has become increasingly challenging. While existing AI-genereted Image detectors achieve promising performance on in-distribution generated images, their generalization to unseen generative models remains limited. This limitation is largely attributed to their reliance on generation-specific artifacts, such as stylistic priors and compression patterns. To address these limitations, we propose GAMMA, a novel training framework designed to reduce domain bias and enhance semantic alignment. GAMMA introduces diverse manipulation strategies, such as inpainting-based manipulation and semantics-preserving perturbations, to ensure consistency between manipulated and authentic content. We employ multi-task supervision with dual segmentation heads and a classification head, enabling pixel-level source attribution across diverse generative domains. In addition, a reverse cross-attention mechanism is introduced to allow the segmentation heads to guide and correct biased representations in the classification branch. Our method achieves state-of-the-art generalization performance on the GenImage benchmark, imporving accuracy by 5.8%, but also maintains strong robustness on newly released generative model such as GPT-4o.
The Forward-Forward (FF) algorithm offers a promising alternative to backpropagation (BP). Despite advancements in recent FF-based extensions, which have enhanced the original algorithm and adapted it to convolutional neural networks (CNNs), they often suffer from limited representational capacity and poor scalability to large-scale datasets, primarily due to exploding channel dimensionality. In this work, we propose adaptive spatial goodness encoding (ASGE), a new FF-based training framework tailored for CNNs. ASGE leverages feature maps to compute spatially-aware goodness representations at each layer, enabling layer-wise supervision. Crucially, this approach decouples classification complexity from channel dimensionality, thereby addressing the issue of channel explosion and achieving competitive performance compared to other BP alternatives. ASGE outperforms all other FF-based approaches across multiple benchmarks, delivering test accuracies of 99.65% on MNIST, 93.41% on FashionMNIST, 90.62% on CIFAR-10, and 65.42% on CIFAR-100. Moreover, we present the first successful application of FF-based training to ImageNet, with Top-1 and Top-5 accuracies of 51.58% and 75.23%. Furthermore, we propose three prediction strategies to achieve flexible trade-offs among accuracy, parameters and memory usage, enabling deployment under diverse resource constraints.
We propose the Soft Graph Transformer (SGT), a soft-input-soft-output neural architecture designed for MIMO detection. While Maximum Likelihood (ML) detection achieves optimal accuracy, its exponential complexity makes it infeasible in large systems, and conventional message-passing algorithms rely on asymptotic assumptions that often fail in finite dimensions. Recent Transformer-based detectors show strong performance but typically overlook the MIMO factor graph structure and cannot exploit prior soft information. SGT addresses these limitations by combining self-attention, which encodes contextual dependencies within symbol and constraint subgraphs, with graph-aware cross-attention, which performs structured message passing across subgraphs. Its soft-input interface allows the integration of auxiliary priors, producing effective soft outputs while maintaining computational efficiency. Experiments demonstrate that SGT achieves near-ML performance and offers a flexible and interpretable framework for receiver systems that leverage soft priors.
We introduce MapAnything, a unified transformer-based feed-forward model that ingests one or more images along with optional geometric inputs such as camera intrinsics, poses, depth, or partial reconstructions, and then directly regresses the metric 3D scene geometry and cameras. MapAnything leverages a factored representation of multi-view scene geometry, i.e., a collection of depth maps, local ray maps, camera poses, and a metric scale factor that effectively upgrades local reconstructions into a globally consistent metric frame. Standardizing the supervision and training across diverse datasets, along with flexible input augmentation, enables MapAnything to address a broad range of 3D vision tasks in a single feed-forward pass, including uncalibrated structure-from-motion, calibrated multi-view stereo, monocular depth estimation, camera localization, depth completion, and more. We provide extensive experimental analyses and model ablations demonstrating that MapAnything outperforms or matches specialist feed-forward models while offering more efficient joint training behavior, thus paving the way toward a universal 3D reconstruction backbone.
Large language models (LLMs) enhance security through alignment when widely used, but remain susceptible to jailbreak attacks capable of producing inappropriate content. Jailbreak detection methods show promise in mitigating jailbreak attacks through the assistance of other models or multiple model inferences. However, existing methods entail significant computational costs. In this paper, we first present a finding that the difference in output distributions between jailbreak and benign prompts can be employed for detecting jailbreak prompts. Based on this finding, we propose a Free Jailbreak Detection (FJD) which prepends an affirmative instruction to the input and scales the logits by temperature to further distinguish between jailbreak and benign prompts through the confidence of the first token. Furthermore, we enhance the detection performance of FJD through the integration of virtual instruction learning. Extensive experiments on aligned LLMs show that our FJD can effectively detect jailbreak prompts with almost no additional computational costs during LLM inference.
Flow-matching-based text-to-speech (TTS) models have shown high-quality speech synthesis. However, most current flow-matching-based TTS models still rely on reference transcripts corresponding to the audio prompt for synthesis. This dependency prevents cross-lingual voice cloning when audio prompt transcripts are unavailable, particularly for unseen languages. The key challenges for flow-matching-based TTS models to remove audio prompt transcripts are identifying word boundaries during training and determining appropriate duration during inference. In this paper, we introduce Cross-Lingual F5-TTS, a framework that enables cross-lingual voice cloning without audio prompt transcripts. Our method preprocesses audio prompts by forced alignment to obtain word boundaries, enabling direct synthesis from audio prompts while excluding transcripts during training. To address the duration modeling challenge, we train speaking rate predictors at different linguistic granularities to derive duration from speaker pace. Experiments show that our approach matches the performance of F5-TTS while enabling cross-lingual voice cloning.
Self-supervised learning (SSL) on large-scale datasets like AudioSet has become the dominant paradigm for audio representation learning. While the continuous influx of new, unlabeled audio presents an opportunity to enrich these static representations, a naive approach is to retrain the model from scratch using all available data. However, this method is computationally prohibitive and discards the valuable knowledge embedded in the previously trained model weights. To address this inefficiency, we propose SONAR (Self-distilled cONtinual pre-training for domain adaptive Audio Representation), a continual pre-training framework built upon BEATs. SONAR effectively adapts to new domains while mitigating catastrophic forgetting by tackling three key challenges: implementing a joint sampling strategy for new and prior data, applying regularization to balance specificity and generality, and dynamically expanding the tokenizer codebook for novel acoustic patterns. Experiments across four distinct domains demonstrate that our method achieves both high adaptability and robust resistance to forgetting.
Auto-bidding systems are widely used in advertising to automatically determine bid values under constraints such as total budget and Return-on-Spend (RoS) targets. Existing works often assume that the value of an ad impression, such as the conversion rate, is known. This paper considers the more realistic scenario where the true value is unknown. We propose a novel method that uses conformal prediction to quantify the uncertainty of these values based on machine learning methods trained on historical bidding data with contextual features, without assuming the data are i.i.d. This approach is compatible with current industry systems that use machine learning to predict values. Building on prediction intervals, we introduce an adjusted value estimator derived from machine learning predictions, and show that it provides performance guarantees without requiring knowledge of the true value. We apply this method to enhance existing auto-bidding algorithms with budget and RoS constraints, and establish theoretical guarantees for achieving high reward while keeping RoS violations low. Empirical results on both simulated and real-world industrial datasets demonstrate that our approach improves performance while maintaining computational efficiency.
Piano cover generation aims to automatically transform a pop song into a piano arrangement. While numerous deep learning approaches have been proposed, existing models often fail to maintain structural consistency with the original song, likely due to the absence of beat-aware mechanisms or the difficulty of modeling complex rhythmic patterns. Rhythmic information is crucial, as it defines structural similarity (e.g., tempo, BPM) and directly impacts the overall quality of the generated music. In this paper, we introduce Etude, a three-stage architecture consisting of Extract, strucTUralize, and DEcode stages. By pre-extracting rhythmic information and applying a novel, simplified REMI-based tokenization, our model produces covers that preserve proper song structure, enhance fluency and musical dynamics, and support highly controllable generation through style injection. Subjective evaluations with human listeners show that Etude substantially outperforms prior models, achieving a quality level comparable to that of human composers.
Commit messages play a key role in documenting the intent behind code changes. However, they are often low-quality, vague, or incomplete, limiting their usefulness. Commit Message Generation (CMG) aims to automatically generate descriptive commit messages from code diffs to reduce developers' effort and improve message quality. Although recent advances in LLMs have shown promise in automating CMG, their performance remains limited. This paper aims to enhance CMG performance by retrieving similar diff-message pairs to guide LLMs to generate commit messages that are more precise and informative. We proposed CoRaCMG, a Contextual Retrieval-augmented framework for Commit Message Generation, structured in three phases: (1) Retrieve: retrieving the similar diff-message pairs; (2) Augment: combining them with the query diff into a structured prompt; and (3) Generate: generating commit messages corresponding to the query diff via LLMs. CoRaCMG enables LLMs to learn project-specific terminologies and writing styles from the retrieved diff-message pairs. We evaluated CoRaCMG across multiple LLMs (e.g., GPT, DeepSeek, and Qwen) and compared its performance against SOTA baselines. Experimental results show that CoRaCMG significantly boosts LLM performance across four metrics (BLEU, Rouge-L, METEOR, and CIDEr). Specifically, DeepSeek-R1 achieves relative improvements of 76% in BLEU and 71% in CIDEr when augmented with a single retrieved example pair. After incorporating the single example pair, GPT-4o achieves the highest improvement rate, with BLEU increasing by 89%. Moreover, performance gains plateau after more than three examples are used, indicating diminishing returns. Further analysis shows that the improvements are attributed to the model's ability to capture the terminologies and writing styles of human-written commit messages from the retrieved example pairs.
Conversational recommendation has advanced rapidly with large language models (LLMs), yet music remains a uniquely challenging domain in which effective recommendations require reasoning over audio content beyond what text or metadata can capture. We present MusiCRS, the first benchmark for audio-centric conversational recommendation that links authentic user conversations from Reddit with corresponding tracks. MusiCRS includes 477 high-quality conversations spanning diverse genres (classical, hip-hop, electronic, metal, pop, indie, jazz), with 3,589 unique musical entities and audio grounding via YouTube links. MusiCRS supports evaluation under three input modality configurations: audio-only, query-only, and audio+query, allowing systematic comparison of audio-LLMs, retrieval models, and traditional approaches. Our experiments reveal that current systems struggle with cross-modal integration, with optimal performance frequently occurring in single-modality settings rather than multimodal configurations. This highlights fundamental limitations in cross-modal knowledge integration, as models excel at dialogue semantics but struggle when grounding abstract musical concepts in audio. To facilitate progress, we release the MusiCRS dataset (this https URL), evaluation code (this https URL), and comprehensive baselines.
Sparse Mixture of Experts (SMoE) has become a preferred architecture for scaling Transformer capacity without increasing computational cost, as it activates only a small subset of experts for each input. However, deploying such an approach for \textit{online inference} remains challenging due to the large size of a full SMoE model and the complexity of expert routing, especially in resource-constrained edge networks. Moreover, during the online inference, task information is often unavailable, making the task-level routing error-prone. In this work, we propose a novel tree-structured adaptive neural bandit router, \texttt{Tanbr}, to enable efficient and reliable online MoE inference. Instead of relying on explicit task tags, \texttt{Tanbr} estimates the task distribution over time from historical data and uses it to guide task-aware expert merging within a given pre-trained MoE. To handle the large continuous space of merging weights, \texttt{Tanbr} employs a binary tree to progressively partition the space and generate finer candidate weights. It then applies a neural bandit to learn the non-linear mapping from merging weight to model performance and decides optimal expert merging. We prove that \texttt{Tanbr} achieves a sublinear regret bound of {\small $\mathcal{O}(\sqrt{T} \log(T))$} over {\small $T$} rounds, despite operating over a continuous decision space, matching regret bounds compared to existing methods. Extensive experiments show that \texttt{Tanbr} reduces inference latency by at least {\small $45\%$} and memory usage by up to {\small $25\%$}, while maintaining a high accuracy compared to many state-of-the-art methods.
Watermarking for large language models (LLMs) embeds a statistical signal during generation to enable detection of model-produced text. While watermarking has proven effective in benign settings, its robustness under adversarial evasion remains contested. To advance a rigorous understanding and evaluation of such vulnerabilities, we propose the \emph{Bias-Inversion Rewriting Attack} (BIRA), which is theoretically motivated and model-agnostic. BIRA weakens the watermark signal by suppressing the logits of likely watermarked tokens during LLM-based rewriting, without any knowledge of the underlying watermarking scheme. Across recent watermarking methods, BIRA achieves over 99\% evasion while preserving the semantic content of the original text. Beyond demonstrating an attack, our results reveal a systematic vulnerability, emphasizing the need for stress testing and robust defenses.
Cross-modal artificial intelligence, represented by visual language models, has achieved significant success in general image understanding. However, a fundamental cognitive inconsistency exists between general visual representation and remote sensing image interpretation: remote sensing images couple topography, terrain, and spatial structure, thereby inherently requiring models to possess deep geoscientific understanding. This cognitive difference is further amplified in synthetic aperture radar (SAR) imagery: while SAR possesses irreplaceable all-weather, all-day observation capabilities, it is constrained by coherent imaging mechanisms, exhibiting significant modal heterogeneity with general images. To address this inconsistency, we propose FUSAR-KLIP, the first knowledge-guided general multimodal foundational model for SAR, along with reusable data and evaluation baselines. Specifically: (1) FUSAR-GEOVL-1M (the first large-scale SAR dataset with complete geographic projection attributes) was constructed, covering multiple satellite platforms, 120,000 images, and 135 cities; (2) Aligned structured text was generated through hierarchical cognitive thought chains, accurately encoding more than 1 million multidimensional semantic information from geomorphological environment and regional attributes to spatial relationships; (3) A self-consistent iterative optimization mechanism was designed to guide cross-modal learning with this knowledge information consistent with human cognition and physical laws in a self-supervised closed loop consisting of contrast, matching, and reconstruction; (4) A unified evaluation benchmark was established in 11 typical downstream tasks in the two major categories of vision and language, and compared with 15 mainstream foundation models.
Flow models parameterized as time-dependent velocity fields can generate data from noise by integrating an ODE. These models are often trained using flow matching, i.e. by sampling random pairs of noise and target points $(\mathbf{x}_0,\mathbf{x}_1)$ and ensuring that the velocity field is aligned, on average, with $\mathbf{x}_1-\mathbf{x}_0$ when evaluated along a segment linking $\mathbf{x}_0$ to $\mathbf{x}_1$. While these pairs are sampled independently by default, they can also be selected more carefully by matching batches of $n$ noise to $n$ target points using an optimal transport (OT) solver. Although promising in theory, the OT flow matching (OT-FM) approach is not widely used in practice. Zhang et al. (2025) pointed out recently that OT-FM truly starts paying off when the batch size $n$ grows significantly, which only a multi-GPU implementation of the Sinkhorn algorithm can handle. Unfortunately, the costs of running Sinkhorn can quickly balloon, requiring $O(n^2/\varepsilon^2)$ operations for every $n$ pairs used to fit the velocity field, where $\varepsilon$ is a regularization parameter that should be typically small to yield better results. To fulfill the theoretical promises of OT-FM, we propose to move away from batch-OT and rely instead on a semidiscrete formulation that leverages the fact that the target dataset distribution is usually of finite size $N$. The SD-OT problem is solved by estimating a dual potential vector using SGD; using that vector, freshly sampled noise vectors at train time can then be matched with data points at the cost of a maximum inner product search (MIPS). Semidiscrete FM (SD-FM) removes the quadratic dependency on $n/\varepsilon$ that bottlenecks OT-FM. SD-FM beats both FM and OT-FM on all training metrics and inference budget constraints, across multiple datasets, on unconditional/conditional generation, or when using mean-flow models.
The rapid development of deepfake generation techniques necessitates robust face forgery detection algorithms. While methods based on Convolutional Neural Networks (CNNs) and Transformers are effective, there is still room for improvement in modeling the highly complex and non-linear nature of forgery artifacts. To address this issue, we propose a novel detection method based on the Kolmogorov-Arnold Network (KAN). By replacing fixed activation functions with learnable splines, our KAN-based approach is better suited to this challenge. Furthermore, to guide the network's focus towards critical facial areas, we introduce a Landmark-assisted Adaptive Kolmogorov-Arnold Network (LAKAN) module. This module uses facial landmarks as a structural prior to dynamically generate the internal parameters of the KAN, creating an instance-specific signal that steers a general-purpose image encoder towards the most informative facial regions with artifacts. This core innovation creates a powerful combination between geometric priors and the network's learning process. Extensive experiments on multiple public datasets show that our proposed method achieves superior performance.
Most modern software products incorporate open-source components, requiring development teams to maintain compliance with each component's licenses. Noncompliance can have significant financial, legal, and reputational repercussions. Although some organizations may seek advice from legal practitioners to assist with licensing tasks, developers still play a key role in this process. To this end, it is essential to understand how developers approach licensing compliance tasks, the challenges they encounter, and the tools they use. This work studies these aspects of software licensing practices through a study - conducted by a joint team of software engineering and legal researchers - consisting of a survey with 58 software developers and 7 follow-up interviews. The study resulted in 13 key findings regarding the current state of practice. We discuss the implications of our findings and offer directions for future research, as well as actionable recommendations.
Recent work on Speech-to-Text Translation (S2TT) has focused on LLM-based models, introducing the increasingly adopted Chain-of-Thought (CoT) prompting, where the model is guided to first transcribe the speech and then translate it. CoT typically outperforms direct prompting primarily because it can exploit abundant Automatic Speech Recognition (ASR) and Text-to-Text Translation (T2TT) datasets to explicitly model its steps. In this paper, we systematically compare CoT and Direct prompting under increasing amounts of S2TT data. To this end, we pseudo-label an ASR corpus by translating its transcriptions into six European languages, and train LLM-based S2TT systems with both prompting strategies at different data scales. Our results show that Direct improves more consistently as the amount of data increases, suggesting that it may become a more effective approach as larger S2TT resources are created.
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework that transforms Reeb graphs from a descriptive analysis tool into a generative model for spatiotemporal trajectories. Our approach captures individual and population-level Patterns of Life (PoLs) and generates realistic trajectories that preserve baseline behaviors while incorporating stochastic variability by embedding probabilistic transitions within the Reeb graph structure. We present two variants: Sequential Reeb Graphs (SRGs) for individual agents and Hybrid Reeb Graphs (HRGs) that combine individual with population PoLs, evaluated on the Urban Anomalies and Geolife datasets using five mobility statistics. Results demonstrate that HRGs achieve strong fidelity across metrics while requiring modest trajectory datasets without specialized side information. This work establishes Markovian Reeb Graphs as a promising framework for trajectory simulation with broad applicability across urban environments.
The unjudged document problem, where systems that did not contribute to the original judgement pool may retrieve documents without a relevance judgement, is a key obstacle to the reuseability of test collections in information retrieval. While the de facto standard to deal with the problem is to treat unjudged documents as non-relevant, many alternatives have been proposed, such as the use of large language models (LLMs) as a relevance judge (LLM-as-a-judge). However, this has been criticized, among other things, as circular, since the same LLM can be used as the ranker and the judge. We propose to train topic-specific relevance classifiers instead: By finetuning monoT5 with independent LoRA weight adaptation on the judgments of a single assessor for a single topic's pool, we align it to that assessor's notion of relevance for the topic. The system rankings obtained through our classifier's relevance judgments achieve a Spearmans' $\rho$ correlation of $>0.94$ with ground truth system rankings. As little as 128 initial human judgments per topic suffice to improve the comparability of models, compared to treating unjudged documents as non-relevant, while achieving more reliability than existing LLM-as-a-judge approaches. Topic-specific relevance classifiers are thus a lightweight and straightforward way to tackle the unjudged document problem, while maintaining human judgments as the gold standard for retrieval evaluation. Code, models, and data are made openly available.
Emotional Support Conversation (ESC) plays a vital role in alleviating psychological stress and providing emotional value through dialogue. While recent studies have largely focused on data augmentation and synthetic corpus construction, they often overlook the deeper cognitive reasoning processes that underpin effective emotional support. To address this gap, we propose \textbf{CARE}, a novel framework that strengthens reasoning in ESC without relying on large-scale synthetic data. CARE leverages the original ESC training set to guide models in generating logically coherent and supportive responses, thereby explicitly enhancing cognitive reasoning. Building on this foundation, we further employ reinforcement learning to refine and reinforce the reasoning process. Experimental results demonstrate that CARE significantly improves both the logical soundness and supportive quality of responses, advancing the development of empathetic, cognitively robust, and human-like emotional support systems.
The use of generative AI (GenAI) tools has fundamentally transformed software development. Central to this shift is prompt engineering, the practice of crafting textual prompts to guide GenAI tools in generating useful content. Although prompt engineering has emerged as a critical skill, prior research has focused primarily on cataloging of prompting techniques, with limited attention to how software practitioners employ GenAI within real-world development workflows. To address this gap, this study presents a systematic investigation of practitioners' integration of GenAI tools into software development, drawing on a rigorous survey that examines prompting strategies, conversation patterns, and reliability assessments across core software development tasks. We surveyed 72 software practitioners who actively use GenAI to characterize AI usage patterns throughout the development process. By combining qualitative and quantitative analyses of the survey responses, we identified 13 key findings that describe how prompting is performed in practice. Our study shows that while code generation is nearly universal, proficiency strongly correlates with the use of GenAI for more nuanced tasks such as debugging and code review. Practitioners also tend to favor iterative multi-turn conversations to single-shot prompting. Documentation tasks are perceived as most reliable, while complex code generation and debugging remain major challenges. Our findings provide an empirical view of practitioner practices, ranging from basic code generation to deeper integration of GenAI into development workflows, enabling us to offer recommendations for improving both GenAI tools and the ways practitioners interact with them.
Recent efforts to accelerate inference in Multimodal Large Language Models (MLLMs) have largely focused on visual token compression. The effectiveness of these methods is commonly evaluated by measuring the accuracy drop on existing MLLM benchmarks before and after compression. However, these benchmarks are originally designed to assess general perception and reasoning abilities, rather than the specific challenges posed by visual token compression, leading to a fundamental task mismatch. In this work, we uncover a counterintuitive yet consistent phenomenon: simple image downsampling outperforms many advanced visual token compression methods across multiple widely used benchmarks. Through a comprehensive empirical study spanning eight popular benchmarks and multiple state-of-the-art compression techniques, we show that (i) current benchmarks contain substantial noise (task-irrelevant samples) for evaluating visual token compression, and (ii) downsampling can act as an effective data filter that distinguishes between simple and difficult samples with respect to compression sensitivity. Motivated by these findings, we propose VTC-Bench, an evaluation framework that explicitly leverages downsampling as a discriminator to denoise existing benchmarks, enabling a fairer and more meaningful additional assessment of visual token compression methods.
While reinforcement learning (RL) enhances their ability to plan and reason across retrieval steps, we identify a critical failure mode in this setting: Tool-Call Hacking. Unlike execution-based tools (e.g., code or math), whose effects are directly observable, the weak observability of causal dependencies between retrieved evidence and reasoning under format- and outcome-level supervision enables agents to maximize surface-level reward signals without genuinely grounding their reasoning in the returned evidence. This leads to distinctive pathologies, including mode collapse via tool overuse and hallucinated tool usage where tool calls are largely decorative. To address this issue, we propose Proof-of-Use (PoU), an evidence grounded RL framework that explicitly optimizes the causal dependency from retrieval to reasoning and final answers. PoU re-fomulate a fine-grained stepwise interaction protocol in which agents must auditably cite normalized evidence identifiers. We operationalize this via a multi-objective reward design consisting of: (1) two progressive process rewards that constrain citation validity at intermediate steps; (2) a global Answer--Support Alignment reward that enforces consistency between final answers and retrieved evidence; and (3) a curriculum-style adaptive reward mixing mechanism that smoothly transitions agents from dense process supervision to sparse outcome-based objectives. Extensive experiments show the strong performance of PoU and demonstrate the effectiveness in mitigating tool-call hacking. Beyond this, PoU exhibits a notable emergent property: adaptive and robust tool-usage patterns naturally arise under domain and tool shifts, even though PoU does not explicitly optimize for tool adaptation.
Modeling cellular responses to genetic and chemical perturbations remains a central challenge in single-cell biology. Existing data-driven frameworks have advanced perturbation prediction through variational autoencoders, chemically conditioned autoencoders, and large-scale transformer pretraining. However, most existing models rely exclusively on either in silico perturbation data or experimental perturbation data but rarely integrate both, limiting their ability to generalize and validate predictions across simulated and real biological contexts in a digital twin system. Moreover, the models are prone to local optima in the nonconvex Waddington landscape of cell fate decisions, where poor initialization can trap trajectories in spurious lineages. In this work, we introduce a two-stage reinforcement learning algorithm for modeling single-cell perturbation. We first compute an explicit natural gradient update using Fisher-vector products and a conjugate gradient solver, scaled by a KL trust-region constraint to provide a safe, curvature-aware first step for the policy. Starting with these preconditioned parameters, we then apply a second phase of proximal policy optimization (PPO) with a KL penalty, exploiting minibatch efficiency to refine the policy. We demonstrate that this initialization strategy substantially improves generalization on Single-cell RNA sequencing (scRNA-seq) perturbation analysis in a digital twin system.
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs under a gray-box setting (i.e., the defender can only query the suspicious model but is aware of its input representation module), based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks. Our code is available at this https URL.
Multimodal Large Language Models (MLLMs) frequently hallucinate due to their reliance on fragile, linear reasoning and weak visual grounding. We propose Visual Attention Reasoning (VAR), a reinforcement learning framework that reformulates reasoning as a hierarchical search with self-verification. VAR enforces traceable evidence grounding by generating explicit bounding boxes, guided by a novel reward function combining geometric precision and semantic sufficiency. Furthermore, it replaces linear Chain-of-Thought with a tree-search policy capable of backtracking to correct logical errors. Theoretical analysis validates the framework's reliability, and extensive experiments demonstrate that VAR significantly outperforms state-of-the-art methods on complex hallucination and safety benchmarks.
Process reward models (PRMs) enhance complex reasoning in large language models (LLMs) by evaluating candidate solutions step-by-step and selecting answers based on aggregated step scores. While effective in domains such as mathematics, their applicability to tasks involving semi-structured data, like table question answering (TQA), remains unexplored. TQA poses unique challenges for PRMs, including abundant irrelevant information, loosely connected reasoning steps, and domain-specific reasoning. This work presents the first systematic study of PRMs for TQA. We evaluate state-of-the-art generative PRMs on TQA from both answer and step perspectives. Results show that PRMs that combine textual and code verification can aid solution selection but struggle to generalize to out-of-domain data. Analysis reveals a weak correlation between performance in step-level verification and answer accuracy, possibly stemming from weak step dependencies and loose causal links. Our findings highlight limitations of current PRMs on TQA and offer valuable insights for building more robust, process-aware verifiers.
Runtime introspection of dependencies, i.e., the ability to observe which dependencies are currently used during program execution, is fundamental for Software Supply Chain security. Yet, Java has no support for it. We solve this problem with Classport, a blueprint and system that embeds dependency information into Java class files, enabling the retrieval of dependency information at runtime. We evaluate Classport on six real-world projects, demonstrating the feasibility in identifying dependencies at runtime.
Deductive verification is an effective method to ensure that a given system exposes the intended behavior. In spite of its proven usefulness and feasibility in selected projects, deductive verification is still not a mainstream technique. To pave the way to widespread use, we present a study investigating the factors enabling successful applications of deductive verification and the underlying issues preventing broader adoption. We conducted semi-structured interviews with 30 practitioners of verification from both industry and academia and systematically analyzed the collected data employing a thematic analysis approach. Beside empirically confirming familiar challenges, e.g., the high level of expertise needed for conducting formal proofs, our data reveal several underexplored obstacles, such as proof maintenance, insufficient control over automation, and usability concerns. We further use the results from our data analysis to extract enablers and barriers for deductive verification and formulate concrete recommendations for practitioners, tool builders, and researchers, including principles for usability, automation, and integration with existing workflows.
Accurately estimating semantic aleatoric and epistemic uncertainties in large language models (LLMs) is particularly challenging in free-form question answering (QA), where obtaining stable estimates often requires many expensive generations. We introduce a diversity-steered sampler that discourages semantically redundant outputs during decoding, covers both autoregressive and masked diffusion paradigms, and yields substantial sample-efficiency gains. The key idea is to inject a continuous semantic-similarity penalty into the model's proposal distribution using a natural language inference (NLI) model lightly finetuned on partial prefixes or intermediate diffusion states. We debias downstream uncertainty estimates with importance reweighting and shrink their variance with control variates. Across four QA benchmarks, our method matches or surpasses baselines while covering more semantic clusters with the same number of samples. Being modular and requiring no gradient access to the base LLM, the framework promises to serve as a drop-in enhancement for uncertainty estimation in risk-sensitive model deployments.
The use of natural language (NL) user profiles in recommender systems offers greater transparency and user control compared to traditional representations. However, there is scarcity of large-scale, publicly available test collections for evaluating NL profile-based recommendation. To address this gap, we introduce SciNUP, a novel synthetic dataset for scholarly recommendation that leverages authors' publication histories to generate NL profiles and corresponding ground truth items. We use this dataset to conduct a comparison of baseline methods, ranging from sparse and dense retrieval approaches to state-of-the-art LLM-based rerankers. Our results show that while baseline methods achieve comparable performance, they often retrieve different items, indicating complementary behaviors. At the same time, considerable headroom for improvement remains, highlighting the need for effective NL-based recommendation approaches. The SciNUP dataset thus serves as a valuable resource for fostering future research and development in this area.
Engineering drawings are fundamental to manufacturing communication, serving as the primary medium for conveying design intent, tolerances, and production details. However, interpreting complex multi-view drawings with dense annotations remains challenging using manual methods, generic optical character recognition (OCR) systems, or traditional deep learning approaches, due to varied layouts, orientations, and mixed symbolic-textual content. To address these challenges, this paper proposes a three-stage hybrid framework for the automated interpretation of 2D multi-view engineering drawings using modern detection and vision language models (VLMs). In the first stage, YOLOv11-det performs layout segmentation to localize key regions such as views, title blocks, and notes. The second stage uses YOLOv11-obb for orientation-aware, fine-grained detection of annotations, including measures, GD&T symbols, and surface roughness indicators. The third stage employs two Donut-based, OCR-free VLMs for semantic content parsing: the Alphabetical VLM extracts textual and categorical information from title blocks and notes, while the Numerical VLM interprets quantitative data such as measures, GD&T frames, and surface roughness. Two specialized datasets were developed to ensure robustness and generalization: 1,000 drawings for layout detection and 1,406 for annotation-level training. The Alphabetical VLM achieved an overall F1 score of 0.672, while the Numerical VLM reached 0.963, demonstrating strong performance in textual and quantitative interpretation, respectively. The unified JSON output enables seamless integration with CAD and manufacturing databases, providing a scalable solution for intelligent engineering drawing analysis.
Novelty detection in large scientific datasets faces two key challenges: the noisy and high-dimensional nature of experimental data, and the necessity of making statistically robust statements about any observed outliers. While there is a wealth of literature on anomaly detection via dimensionality reduction, most methods do not produce outputs compatible with quantifiable claims of scientific discovery. In this work we directly address these challenges, presenting the first step towards a unified pipeline for novelty detection adapted for the rigorous statistical demands of science. We introduce AutoSciDACT (Automated Scientific Discovery with Anomalous Contrastive Testing), a general-purpose pipeline for detecting novelty in scientific data. AutoSciDACT begins by creating expressive low-dimensional data representations using a contrastive pre-training, leveraging the abundance of high-quality simulated data in many scientific domains alongside expertise that can guide principled data augmentation strategies. These compact embeddings then enable an extremely sensitive machine learning-based two-sample test using the New Physics Learning Machine (NPLM) framework, which identifies and statistically quantifies deviations in observed data relative to a reference distribution (null hypothesis). We perform experiments across a range of astronomical, physical, biological, image, and synthetic datasets, demonstrating strong sensitivity to small injections of anomalous data across all domains.
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing hyperbolic POI recommendation models, predominantly based on rotations and graph representations, have been extensively investigated. Although hyperbolic geometry has proven superior in representing hierarchical data with low distortion, current hyperbolic sequence models typically rely on performing recurrence via expensive Möbius operations directly on the manifold. This incurs prohibitive computational costs and numerical instability, rendering them ill-suited for trajectory modeling. To resolve this conflict between geometric representational power and sequential efficiency, we propose GTR-Mamba, a novel framework featuring Geometry-to-Tangent Routing. GTR-Mamba strategically routes complex state transitions to the computationally efficient Euclidean tangent space. Crucially, instead of a static approximation, we introduce a Parallel Transport (PT) mechanism that dynamically aligns tangent spaces along the trajectory. This ensures geometric consistency across recursive updates, effectively bridging the gap between the curved manifold and linear tangent operations. This process is orchestrated by an exogenous spatio-temporal channel, which explicitly modulates the SSM discretization parameters. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baselines in next POI recommendation.
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
Detecting mental health crisis situations such as suicide ideation, rape, domestic violence, child abuse, and sexual harassment is a critical yet underexplored challenge for language models. When such situations arise during user--model interactions, models must reliably flag them, as failure to do so can have serious consequences. In this work, we introduce CRADLE BENCH, a benchmark for multi-faceted crisis detection. Unlike previous efforts that focus on a limited set of crisis types, our benchmark covers seven types defined in line with clinical standards and is the first to incorporate temporal labels. Our benchmark provides 600 clinician-annotated evaluation examples and 420 development examples, together with a training corpus of around 4K examples automatically labeled using a majority-vote ensemble of multiple language models, which significantly outperforms single-model annotation. We further fine-tune six crisis detection models on subsets defined by consensus and unanimous ensemble agreement, providing complementary models trained under different agreement criteria.
Recent advances in deep generative models have made it easier to manipulate face videos, raising significant concerns about their potential misuse for fraud and misinformation. Existing detectors often perform well in in-domain scenarios but fail to generalize across diverse manipulation techniques due to their reliance on forgery-specific artifacts. In this work, we introduce DeepShield, a novel deepfake detection framework that balances local sensitivity and global generalization to improve robustness across unseen forgeries. DeepShield enhances the CLIP-ViT encoder through two key components: Local Patch Guidance (LPG) and Global Forgery Diversification (GFD). LPG applies spatiotemporal artifact modeling and patch-wise supervision to capture fine-grained inconsistencies often overlooked by global models. GFD introduces domain feature augmentation, leveraging domain-bridging and boundary-expanding feature generation to synthesize diverse forgeries, mitigating overfitting and enhancing cross-domain adaptability. Through the integration of novel local and global analysis for deepfake detection, DeepShield outperforms state-of-the-art methods in cross-dataset and cross-manipulation evaluations, achieving superior robustness against unseen deepfake attacks. Code is available at this https URL.
Modeling complex spatiotemporal dynamics, particularly in far-from-equilibrium systems, remains a grand challenge in science. The governing partial differential equations (PDEs) for these systems are often intractable to derive from first principles, due to their inherent complexity, characterized by high-order derivatives and strong nonlinearities, coupled with incomplete physical knowledge. This has spurred the development of data-driven methods, yet these approaches face limitations: Purely data-driven models are often physically inconsistent and data-intensive, while existing physics-informed methods lack the structural capacity to represent complex operators or systematically integrate partial physical knowledge. Here, we propose a hierarchical physics-embedded learning framework that fundamentally advances both the forward spatiotemporal prediction and inverse discovery of physical laws from sparse and noisy data. The key innovation is a two-level architecture that mirrors the process of scientific discovery: the first level learns fundamental symbolic components of a PDE, while the second learns their governing combinations. This hierarchical decomposition not only reduces learning complexity but, more importantly, enables a structural integration of prior knowledge. Known physical laws are directly embedded into the models computational graph, guaranteeing physical consistency and improving data efficiency. By building the framework upon adaptive Fourier Neural Operators, we can effectively capture the non-local dependencies and high-order operators characteristic of dynamical systems. Additionally, by structurally decoupling known and unknown terms, the framework further enables interpretable discovery of underlying governing equations through symbolic regression, without presupposing functional forms.
Continuous electrocardiogram (ECG) monitoring via wearable devices is vital for early cardiovascular disease detection. However, deploying deep learning models on resource-constrained microcontrollers faces reliability challenges, particularly from Out-of-Distribution (OOD) pathologies and noise. Standard classifiers often yield high-confidence errors on such data. Existing OOD detection methods either neglect computational constraints or address noise and unseen classes separately. This paper investigates Unsupervised Anomaly Detection (UAD) as a lightweight, upstream filtering mechanism. We perform a Neural Architecture Search (NAS) on six UAD approaches, including Deep Support Vector Data Description (Deep SVDD), input reconstruction with (Variational-)Autoencoders (AE/VAE), Masked Anomaly Detection (MAD), Normalizing Flows (NFs) and Denoising Diffusion Probabilistic Models (DDPM) under strict hardware constraints ($\leq$512k parameters), suitable for microcontrollers. Evaluating on the PTB-XL and BUT QDB datasets, we demonstrate that a NAS-optimized Deep SVDD offers the superior Pareto efficiency between detection performance and model size. In a simulated deployment, this lightweight filter improves the accuracy of a diagnostic classifier by up to 21.0 percentage points, demonstrating that optimized UAD filters can safeguard ECG analysis on wearables.
The design and application of LLM-based personas in AI companionship is a rapidly expanding but fragmented field, spanning from virtual emotional companions and game NPCs to embodied functional robots. This diversity in objectives, modality, and technical stacks creates an urgent need for a unified framework. To address this gap, this paper systematizes the field by proposing a Four-Quadrant Technical Taxonomy for AI companion applications. The framework is structured along two critical axes: Virtual vs. Embodied and Emotional Companionship vs. Functional Augmentation. Quadrant I (Virtual Companionship) explores virtual idols, romantic companions, and story characters, introducing a four-layer technical framework to analyze their challenges in maintaining long-term emotional consistency. Quadrant II (Functional Virtual Assistants) analyzes AI applications in work, gaming, and mental health, highlighting the shift from "feeling" to "thinking and acting" and pinpointing key technologies like enterprise RAG and on-device inference. Quadrants III & IV (Embodied Intelligence) shift from the virtual to the physical world, analyzing home robots and vertical-domain assistants, revealing core challenges in symbol grounding, data privacy, and ethical liability. This taxonomy provides not only a systematic map for researchers and developers to navigate the complex persona design space but also a basis for policymakers to identify and address the unique risks inherent in different application scenarios.
A growing body of literature has focused on understanding and addressing workplace AI design failures. However, past work has largely overlooked the role of the devaluation of worker expertise in shaping the dynamics of AI development and deployment. In this paper, we examine the case of feminized labor: a class of devalued occupations historically misnomered as ``women's work,'' such as social work, K-12 teaching, and home healthcare. Drawing on literature on AI deployments in feminized labor contexts, we conceptualize AI Failure Loops: a set of interwoven, socio-technical failure modes that help explain how the systemic devaluation of workers' expertise negatively impacts, and is impacted by, AI design, evaluation, and governance practices. These failures demonstrate how misjudgments on the automatability of workers' skills can lead to AI deployments that fail to bring value to workers and, instead, further diminish the visibility of workers' expertise. We discuss research and design implications for workplace AI, especially for devalued occupations.
Centralized Multiport Networked Dynamic (CMND) systems have emerged as a key architecture with applications in several complex network systems, such as multilateral telerobotics and multi-agent control. These systems consist of a hub node/subsystem connecting with multiple remote nodes/subsystems via a networked architecture. One challenge for this system is stability, which can be affected by non-ideal network artifacts. Conventional passivity-based approaches can stabilize the system under specialized applications like small-scale networked systems. However, those conventional passive stabilizers have several restrictions, such as distributing compensation across subsystems in a decentralized manner, limiting flexibility, and, at the same time, relying on the restrictive assumptions of node passivity. This paper synthesizes a centralized optimal passivity-based stabilization framework for CMND systems. It consists of a centralized passivity observer monitoring overall energy flow and an optimal passivity controller that distributes the just-needed dissipation among various nodes, guaranteeing strict passivity and, thus, L2 stability. The proposed data-driven model-free approach, i.e., Tunable Centralized Optimal Passivity Control (TCoPC), optimizes total performance based on the prescribed dissipation distribution strategy while ensuring stability. The controller can put high dissipation loads on some sub-networks while relaxing the dissipation on other nodes. Simulation results demonstrate the proposed frameworks performance in a complex task under different time-varying delay scenarios while relaxing the remote nodes minimum phase and passivity assumption, enhancing the scalability and generalizability.
Transfer learning on tabular data is challenging due to disparate feature spaces across domains, in contrast to the homogeneous structures of image and text. Large language models (LLMs) offer a knowledge base to improve the limited effectiveness of cross-domain transfer learning for tabular data. However, LLM performance often stagnates due to subjective text prompts and the computational limitations of in-context learning. We present a novel language-to-tabular context-learning method that uses attention-specific transformer weights, enabling seamless transfer learning across disparate tabular data sets. The LLM attention transplant mechanism facilitates a domain-agnostic transfer learning, eliminating the need for shared features between tables, LLM prompt engineering, and large-scale pretrained models. Our experiments using ten pairs of disjoint source-target data sets and 12 baseline methods demonstrate the superiority of the proposed LLM-attention transplant for transfer learning (LATTLE) method over traditional ML models, state-of-the-art deep tabular architectures, and models trained on thousands to billions of tabular samples. The proposed cross-domain attention transfer demonstrates an effective solution for adapting LLMs to learning non-text tabular data in a low-resource environment. The source code of the LATTLE implementation is publicly available.
Joint-Embedding Predictive Architectures (JEPAs), a powerful class of self-supervised models, exhibit an unexplained ability to cluster time-series data by their underlying dynamical regimes. We propose a novel theoretical explanation for this phenomenon, hypothesizing that JEPA's predictive objective implicitly drives it to learn the invariant subspace of the system's Koopman operator. We prove that an idealized JEPA loss is minimized when the encoder represents the system's regime indicator functions, which are Koopman eigenfunctions. This theory was validated on synthetic data with known dynamics, demonstrating that constraining the JEPA's linear predictor to be a near-identity operator is the key inductive bias that forces the encoder to learn these invariants. We further discuss that this constraint is critical for selecting this interpretable solution from a class of mathematically equivalent but entangled optima, revealing the predictor's role in representation disentanglement. This work demystifies a key behavior of JEPAs, provides a principled connection between modern self-supervised learning and dynamical systems theory, and informs the design of more robust and interpretable time-series models.
Best arm identification (BAI) aims to identify the highest-performance arm among a set of $K$ arms by collecting stochastic samples from each arm. In real-world problems, the best arm needs to satisfy additional feasibility constraints. While there is limited prior work on BAI with feasibility constraints, they typically assume the performance and constraints are observed simultaneously on each pull of an arm. However, this assumption does not reflect most practical use cases, e.g., in drug discovery, we wish to find the most potent drug whose toxicity and solubility are below certain safety thresholds. These safety experiments can be conducted separately from the potency measurement. Thus, this requires designing BAI algorithms that not only decide which arm to pull but also decide whether to test for the arm's performance or feasibility. In this work, we study feasible BAI which allows a decision-maker to choose a tuple $(i,\ell)$, where $i\in [K]$ denotes an arm and $\ell$ denotes whether she wishes to test for its performance ($\ell=0$) or any of its $N$ feasibility constraints ($\ell\in[N]$). We focus on the fixed confidence setting, which is to identify the feasible arm with the highest performance, with a probability of at least $1-\delta$. We propose an efficient algorithm and upper-bound its sample complexity, showing our algorithm can naturally adapt to the problem's difficulty and eliminate arms by worse performance or infeasibility, whichever is easier. We complement this upper bound with a lower bound showing that our algorithm is \textit{asymptotically ($\delta\rightarrow 0$) optimal}. Finally, we empirically show that our algorithm outperforms other state-of-the-art BAI algorithms in both synthetic and real-world datasets.
Automatic speech recognition (ASR) systems have achieved remarkable performance in common conditions but often struggle to leverage long-context information in contextualized scenarios that require domain-specific knowledge, such as conference presentations. This challenge arises primarily due to constrained model context windows and the sparsity of relevant information within extensive contextual noise. To solve this, we propose the SAP$^{2}$ method, a novel framework that dynamically prunes and integrates relevant contextual keywords in two stages. Specifically, each stage leverages our proposed Speech-Driven Attention-based Pooling mechanism, enabling efficient compression of context embeddings while preserving speech-salient information. Experimental results demonstrate state-of-the-art performance of SAP$^{2}$ on the SlideSpeech and LibriSpeech datasets, achieving word error rates (WER) of 7.71% and 1.12%, respectively. On SlideSpeech, our method notably reduces biased keyword error rates (B-WER) by 41.1% compared to non-contextual baselines. SAP$^{2}$ also exhibits robust scalability, consistently maintaining performance under extensive contextual input conditions on both datasets.
This paper proposes a novel Kernelized Data-Driven Predictive Control (KDPC) scheme for robust, offset-free tracking of nonlinear systems. Our computationally efficient hybrid approach separates the prediction: (1) kernel ridge regression learns the nonlinear map from past trajectories, and (2) analytical linearization of the kernel map approximates the effect of future inputs. This linearization is key, allowing the controller to be formulated as a standard Quadratic Program (QP) for efficient real-time implementation. Offset-free tracking is inherently achieved by using input increments. We provide theoretical guarantees for recursive feasibility and asymptotic stability. The algorithm is validated on a nonlinear Van der Pol oscillator, where it successfully rejects unmeasured disturbances and eliminates steady-state errors, outperforming a standard model-based controller.
Standard H-infinity/H2 robust control and analysis tools operate on uncertain parameters assumed to vary independently within prescribed bounds. This paper extends their capabilities in the presence of constraints coupling these parameters and restricting the parametric space. Focusing on the worst-case search, we demonstrate - based on the theory of upper-C1 functions - the validity of using standard, readily available smooth optimization algorithms to address this nonsmooth constrained optimization problem. In particular, we prove that the sequential quadratic programming algorithm converges to Karush-Kuhn-Tucker points, and that such conditions are satisfied by any subgradient at a local minimum. This worst-case search then enables robust controller synthesis: identified worst-case configurations are iteratively added to an active set on which a non-smooth multi-models optimization of the controller is performed. The methodology is illustrated on a satellite benchmark with flexible appendages, of order 50 with 43 uncertain parameters. From a practical point of view, we combine the local exploitation proposed above with a global exploration using either Monte-Carlo sampling or particle swarm optimization. We show that the proposed constrained optimization effectively complements Monte-Carlo sampling by enabling fast detection of rare worst-case configurations, and that the robust controller optimization converges with less than 10 active configurations.
This study deliberates on the application of advanced AI techniques for brain tumor classification through MRI, wherein the training includes the present best deep learning models to enhance diagnosis accuracy and the potential of usability in clinical practice. By combining custom convolutional models with pre-trained neural network architectures, our approach exposes the utmost performance in the classification of four classes: glioma, meningioma, pituitary tumors, and no-tumor cases. Assessing the models on a large dataset of over 7,000 MRI images focused on detection accuracy, computational efficiency, and generalization to unseen data. The results indicate that the Xception architecture surpasses all other were tested, obtaining a testing accuracy of 98.71% with the least validation loss. While presenting this case with findings that demonstrate AI as a probable scorer in brain tumor diagnosis, we demonstrate further motivation by reducing computational complexity toward real-world clinical deployment. These aspirations offer an abundant future for progress in automated neuroimaging diagnostics.
Large Language Models (LLMs) have shown significant potential for improving recommendation systems through their inherent reasoning capabilities and extensive knowledge base. Yet, existing studies predominantly address warm-start scenarios with abundant user-item interaction data, leaving the more challenging cold-start scenarios, where sparse interactions hinder traditional collaborative filtering methods, underexplored. To address this limitation, we propose novel reasoning strategies designed for cold-start item recommendations within the Netflix domain. Our method utilizes the advanced reasoning capabilities of LLMs to effectively infer user preferences, particularly for newly introduced or rarely interacted items. We systematically evaluate supervised fine-tuning, reinforcement learning-based fine-tuning, and hybrid approaches that combine both methods to optimize recommendation performance. Extensive experiments on real-world data demonstrate significant improvements in both methodological efficacy and practical performance in cold-start recommendation contexts. Remarkably, our reasoning-based fine-tuned models outperform Netflix's production ranking model by up to 8% in certain cases.
Harnessing the reasoning power of Large Language Models (LLMs) for recommender systems is hindered by two fundamental challenges. First, current approaches lack a mechanism for automated, data-driven discovery of effective reasoning patterns, relying instead on brittle manual templates or unstable zero-shot prompting. Second, they employ structure-collapsing integration: direct prompting incurs prohibitive online inference costs, while feature extraction collapses reasoning chains into single vectors, discarding stepwise logic. To address these challenges, we propose SCoTER (Structured Chain-of-Thought Transfer for Enhanced Recommendation), a unified framework that treats pattern discovery and structure-aware transfer as a jointly optimized problem. Specifically, SCoTER operationalizes this through two synergistic components: a GVM pipeline for automated pattern discovery and a structure-preserving integration architecture that transfers stepwise logic to efficient models. Formally, we provide information-theoretic justification proving that structure-preserving transfer achieves tighter performance bounds than structure-agnostic alternatives. Empirically, experiments on four benchmarks demonstrate improvements of 3.75\%-11.59\% over a strong TIGER backbone. Moreover, in production deployment on the Tencent Advertising Platform, SCoTER achieved a 2.14\% lift in Gross Merchandise Value (GMV) while eliminating online LLM inference costs. Overall, SCoTER establishes a principled and production-validated blueprint for transferring structured LLM reasoning to large-scale recommender systems.
We present a framework that pioneers the prediction of photochemical conversion in complex three-dimensionally printed objects, introducing a challenging new computer vision task: predicting dense, non-visual volumetric physical properties from 3D visual data. This approach leverages the largest-ever optically printed 3D specimen dataset, comprising a large family of parametrically designed complex minimal surface structures that have undergone terminal chemical characterisation. Conventional vision models are ill-equipped for this task, as they lack an inductive bias for the coupled, non-linear interactions of optical physics (diffraction, absorption) and material physics (diffusion, convection) that govern the final chemical state. To address this, we propose Coupled Physics-Gated Adaptation (C-PGA), a novel multimodal fusion architecture. Unlike standard concatenation, C-PGA explicitly models physical coupling by using sparse geometrical and process parameters (e.g., surface transport, print layer height) as a Query to dynamically gate and adapt the dense visual features via feature-wise linear modulation (FiLM). This mechanism spatially modulates dual 3D visual streams-extracted by parallel 3D-CNNs processing raw projection stacks and their diffusion-diffraction corrected counterparts allowing the model to recalibrate its visual perception based on the physical context. This approach offers a breakthrough in virtual chemical characterisation, eliminating the need for traditional post-print measurements and enabling precise control over the chemical conversion state.
Mental health challenges and cyberbullying are increasingly prevalent in digital spaces, necessitating scalable and interpretable detection systems. This paper introduces a unified multiclass classification framework for detecting ten distinct mental health and cyberbullying categories from social media data. We curate datasets from Twitter and Reddit, implementing a rigorous "split-then-balance" pipeline to train on balanced data while evaluating on a realistic, held-out imbalanced test set. We conducted a comprehensive evaluation comparing traditional lexical models, hybrid approaches, and several end-to-end fine-tuned transformers. Our results demonstrate that end-to-end fine-tuning is critical for performance, with the domain-adapted MentalBERT emerging as the top model, achieving an accuracy of 0.92 and a Macro F1 score of 0.76, surpassing both its generic counterpart and a zero-shot LLM baseline. Grounded in a comprehensive ethical analysis, we frame the system as a human-in-the-loop screening aid, not a diagnostic tool. To support this, we introduce a hybrid SHAPLLM explainability framework and present a prototype dashboard ("Social Media Screener") designed to integrate model predictions and their explanations into a practical workflow for moderators. Our work provides a robust baseline, highlighting future needs for multi-label, clinically-validated datasets at the critical intersection of online safety and computational mental health.
This paper presents a minimal operator-only term rewriting system with seven constructors and eight reduction rules. The main contribution is a mechanically-verified proof of strong normalization for a guarded fragment using a novel triple-lexicographic measure combining a phase bit, multiset ordering (Dershowitz-Manna), and ordinal ranking. From strong normalization, a certified normalizer with proven totality and soundness is derived. Assuming local confluence (verified through critical pair analysis), Newman's Lemma yields confluence and therefore unique normal forms for the safe fragment. Impossibility results showing that simpler measures, such as additive counters, polynomial interpretations, and single-bit flags, provably fail for rules with term duplication, are established. The work demonstrates fundamental limitations in termination proving for self-referential systems. A conjecture is stated: no relational operator-only TRS can have its full-system termination proved by internally definable methods. Here "relational" is equivalent to "capable of ordered computation": systems with a recursor enabling iteration over successors, comparison, or sequential counting. Such recursors necessarily redistribute step arguments across recursive calls, defeating all additive termination measures. This structural limitation applies to any TRS expressive enough to encode ordered data. All theorems have been formally verified in a proof assistant. The Lean formalization is available at this https URL.
A key aspect of learned partial differential equation (PDE) solvers is that the main cost often comes from generating training data with classical solvers rather than learning the model itself. Another is that there are clear axes of difficulty--e.g., more complex geometries and higher Reynolds numbers--along which problems become (1) harder for classical solvers and thus (2) more likely to benefit from neural speedups. Towards addressing this chicken-and-egg challenge, we study difficulty transfer on 2D incompressible Navier-Stokes, systematically varying task complexity along geometry (number and placement of obstacles), physics (Reynolds number), and their combination. Similar to how it is possible to spend compute to pre-train foundation models and improve their performance on downstream tasks, we find that by classically solving (analogously pre-generating) many low and medium difficulty examples and including them in the training set, it is possible to learn high-difficulty physics from far fewer samples. Furthermore, we show that by combining low and high difficulty data, we can spend 8.9x less compute on pre-generating a dataset to achieve the same error as using only high difficulty examples. Our results highlight that how we allocate classical-solver compute across difficulty levels is as important as how much we allocate overall, and suggest substantial gains from principled curation of pre-generated PDE data for neural solvers. Our code is available at this https URL
While LLM/VLM-powered AI agents have advanced rapidly in math, coding, and computer use, their applications in complex physical and social environments remain challenging. Building agents that can survive and thrive in the real world (for example, by autonomously earning income or running a business) requires massive-scale interaction, reasoning, training, and evaluation across diverse embodied scenarios. However, existing world simulators for such development fall short: they often rely on limited hand-crafted environments, simulate simplified game-like physics and social rules, and lack native support for LLM/VLM agents. We introduce SimWorld, a new simulator built on Unreal Engine 5, designed for developing and evaluating LLM/VLM agents in rich, real-world-like settings. SimWorld offers three core capabilities: (1) realistic, open-ended world simulation, including accurate physical and social dynamics and language-driven procedural environment generation; (2) a rich interface for LLM/VLM agents, with multimodal world inputs and open-vocabulary actions at varying levels of abstraction; and (3) diverse and extensible physical and social reasoning scenarios that are easily customizable by users. We demonstrate SimWorld by deploying frontier LLM agents (e.g., GPT-4o, Gemini-2.5-Flash, Claude-3.5, and DeepSeek-Prover-V2) on long-horizon multi-agent delivery tasks involving strategic cooperation and competition. The results reveal distinct reasoning patterns and limitations across models. We open-source SimWorld and hope it becomes a foundational platform for advancing real-world agent intelligence across disciplines: this https URL.
Partial differential equations (PDEs) govern a wide variety of dynamical processes in science and engineering, yet obtaining their numerical solutions often requires high-resolution discretizations and repeated evaluations of complex operators, leading to substantial computational costs. Neural operators have recently emerged as a powerful framework for learning mappings between function spaces directly from data, enabling efficient surrogate models for PDE systems. Among these architectures, the Fourier Neural Operator (FNO) has become the most influential and widely adopted due to its elegant spectral formulation, which captures global correlations through learnable transformations in Fourier space while remaining invariant to discretization and resolution. Despite their success, the practical use of FNOs is often hindered by an incomplete understanding among practitioners of their theoretical foundations, practical constraints, and implementation details, which can lead to their incorrect or unreliable application. This work presents a comprehensive and practice-oriented guide to FNOs, unifying their mathematical principles with implementation strategies. We provide an intuitive exposition to the concepts of operator theory and signal-processing that underlie the FNO, detail its spectral parameterization and the computational design of all its components, and address common misunderstandings encountered in the literature. The exposition is closely integrated with the NeuralOperator 2.0.0 library, offering modular state-of-the-art implementations that faithfully reflect the theory. By connecting rigorous foundations with practical insight, this guide aims to establish a clear and reliable framework for applying FNOs effectively across diverse scientific and engineering fields.
Trajectory prediction is crucial for the reliability and safety of autonomous driving systems, yet it remains a challenging task in complex interactive scenarios due to noisy trajectory observations and intricate agent interactions. Existing methods often struggle to filter redundant scene data for discriminative information extraction, directly impairing trajectory prediction accuracy especially when handling outliers and dynamic multi-agent interactions. In response to these limitations, we present a novel map-free trajectory prediction method which adaptively eliminates redundant information and selects discriminative features across the temporal, spatial, and frequency domains, thereby enabling precise trajectory prediction in real-world driving environments. First, we design a MoE based frequency domain filter to adaptively weight distinct frequency components of observed trajectory data and suppress outlier related noise; then a selective spatiotemporal attention module that reallocates weights across temporal nodes (sequential dependencies), temporal trends (evolution patterns), and spatial nodes to extract salient information is proposed. Finally, our multimodal decoder-supervised by joint patch level and point-level losses generates reasonable and temporally consistent trajectories, and comprehensive experiments on the large-scale NuScenes and Argoverse dataset demonstrate that our method achieves competitive performance and low-latency inference performance compared with recently proposed methods.
Generative models have shown immense potential for wireless communication by learning complex channel data distributions. However, the iterative denoising process associated with these models imposes a significant challenge in latency-sensitive wireless communication scenarios, particularly in channel estimation. To address this challenge, we propose a novel solution for one-step generative channel estimation. Our approach bypasses the time-consuming iterative steps of conventional models by directly learning the average velocity field. Through extensive simulations, we validate the effectiveness of our proposed method over existing state-of-the-art diffusion-based approach. Specifically, our scheme achieves a normalized mean squared error up to 2.65 dB lower than the diffusion method and reduces latency by around 90%, demonstrating the potential of our method to enhance channel estimation performance.
This study proposes a control strategy to ensure the safe operation of modern power systems with high penetration of inverter-based resources (IBRs) within an optimal operation framework. The objective is to obtain operating points that satisfy the optimality conditions of a predefined problem while guaranteeing small-signal stability. The methodology consists of two stages. First, an offline analysis of a set of operating points is performed to derive a data-driven regression-based expression that captures a damping-based stability index as a function of the operating conditions. Second, an Online Feedback Optimization (OFO) controller is employed to drive the system toward an optimal operating point while maintaining a secure distance from the instability region. The proposed strategy is evaluated on an academic test case based on a modified version of the IEEE 9-bus system, in which synchronous generators are replaced by IBRs operating under both grid-following and grid-forming control modes. The results demonstrate the effectiveness of the method and are discussed in detail.
The increasing penetration of inverter-based resources (IBRs) is fundamentally reshaping power system dynamics and creating new challenges for stability assessment. Data-driven approaches, and in particular machine learning models, require large and representative datasets that capture how system stability varies across a wide range of operating conditions and control settings. This paper presents an open-source, high-performance computing framework for the systematic generation of such datasets. The proposed tool defines a scalable operating space for large-scale power systems, explores it through an adaptive sampling strategy guided by sensitivity analysis, and performs small-signal stability assessments to populate a high-information-content dataset. The framework efficiently targets regions near the stability margin while maintaining broad coverage of feasible operating conditions. The workflow is fully implemented in Python and designed for parallel execution. The resulting tool enables the creation of high-quality datasets that support data-driven stability studies in modern power systems with high IBR penetration.
Autonomous Large Language Model (LLM) agents exhibit significant vulnerability to Indirect Prompt Injection (IPI) attacks. These attacks hijack agent behavior by polluting external information sources, exploiting fundamental trade-offs between security and functionality in existing defense mechanisms. This leads to malicious and unauthorized tool invocations, diverting agents from their original objectives. The success of complex IPIs reveals a deeper systemic fragility: while current defenses demonstrate some effectiveness, most defense architectures are inherently fragmented. Consequently, they fail to provide full integrity assurance across the entire task execution pipeline, forcing unacceptable multi-dimensional compromises among security, functionality, and efficiency. Our method is predicated on a core insight: no matter how subtle an IPI attack, its pursuit of a malicious objective will ultimately manifest as a detectable deviation in the action trajectory, distinct from the expected legitimate plan. Based on this, we propose the Cognitive Control Architecture (CCA), a holistic framework achieving full-lifecycle cognitive supervision. CCA constructs an efficient, dual-layered defense system through two synergistic pillars: (i) proactive and preemptive control-flow and data-flow integrity enforcement via a pre-generated "Intent Graph"; and (ii) an innovative "Tiered Adjudicator" that, upon deviation detection, initiates deep reasoning based on multi-dimensional scoring, specifically designed to counter complex conditional attacks. Experiments on the AgentDojo benchmark substantiate that CCA not only effectively withstands sophisticated attacks that challenge other advanced defense methods but also achieves uncompromised security with notable efficiency and robustness, thereby reconciling the aforementioned multi-dimensional trade-off.
The rising global prevalence of diabetes necessitates early detection to prevent severe complications. While AI-powered prediction applications offer a promising solution, they require a responsive and scalable back-end architecture to serve a large user base effectively. This paper details the development and evaluation of a scalable back-end system designed for a mobile diabetes prediction application. The primary objective was to maintain a failure rate below 5% and an average latency of under 1000 ms. The architecture leverages horizontal scaling, database sharding, and asynchronous communication via a message queue. Performance evaluation showed that 83% of the system's features (20 out of 24) met the specified performance targets. Key functionalities such as user profile management, activity tracking, and read-intensive prediction operations successfully achieved the desired performance. The system demonstrated the ability to handle up to 10,000 concurrent users without issues, validating its scalability. The implementation of asynchronous communication using RabbitMQ proved crucial in minimizing the error rate for computationally intensive prediction requests, ensuring system reliability by queuing requests and preventing data loss under heavy load.
User behavior prediction at scale remains a critical challenge for online B2C platforms. Traditional approaches rely heavily on task-specific models and domain-specific feature engineering. This is time-consuming, computationally expensive, and requires domain expertise and therefore, not scalable. We present LUMOS (Large User MOdel Series), a transformer-based architecture that eliminates task-specific models and manual feature engineering by learning multiple tasks jointly using only raw user activity data. LUMOS introduces a novel cross-attention mechanism that conditions predictions on future known events (e.g., holidays, sales, etc.), enabling the model to predict complex behavior patterns like "how will upcoming holidays affect user engagement?" The architecture also employs multi-modal tokenization, combining user activities, event context, and static user demographic attributes into rich representations processed through specialized embedding pathways. Through extensive experiments on a production dataset spanning 1.7 trillion user activity tokens from 250 million users, we demonstrate that LUMOS achieves superior performance compared to traditional task-specific models. Across 5 tasks with established baselines, we achieve an average improvement of 0.025 in ROC-AUC for binary classification tasks and 4.6\% reduction in MAPE for regression tasks. Online A/B testing validates these improvements translate to measurable business impact with a 3.15\% increase in Daily Active Users.
Pretrained Multimodal Large Language Models (MLLMs) are increasingly used in sensitive domains such as medical AI, where privacy regulations like HIPAA and GDPR require specific removal of individuals' or institutions' data. This motivates machine unlearning, which aims to remove the influence of target data from a trained model. However, existing unlearning benchmarks fail to reflect the hierarchical and multimodal structure of real-world medical data, limiting their ability to properly evaluate unlearning in practice. Therefore, we introduce MedForget, a hierarchy-aware multimodal unlearning benchmark that models hospital data as a nested structure, enabling fine-grained evaluation of multimodal unlearning across retain and forget splits. Experiments with current unlearning methods show that existing approaches struggle to achieve effective hierarchy-aware forgetting without degrading downstream medical utility. To address this limitation, we propose Cross-modal Hierarchy-Informed Projection for unlearning (CHIP), a training-free, hierarchy-aware multimodal unlearning method that deletes information by selectively removing target-specific weight subspaces while preserving sibling-shared information. Experiments show that CHIP achieves the highest forget-retain performance gap across all hierarchy levels while maintaining competitive downstream utility compared to existing methods. Overall, MedForget provides a practical, HIPAA-aligned benchmark for evaluating structured multimodal unlearning for medical data, and CHIP offers an effective and general solution for hierarchy-aware forgetting that balances deletion with utility.
Large language models (LLMs) are increasingly touted as powerful tools for automating scientific information extraction. However, existing methods and tools often struggle with the realities of scientific literature: long-context documents, multi-modal content, and reconciling varied and inconsistent fine-grained information across multiple publications into standardized formats. These challenges are further compounded when the desired data schema or extraction ontology changes rapidly, making it difficult to re-architect or fine-tune existing systems. We present SciEx, a modular and composable framework that decouples key components including PDF parsing, multi-modal retrieval, extraction, and aggregation. This design streamlines on-demand data extraction while enabling extensibility and flexible integration of new models, prompting strategies, and reasoning mechanisms. We evaluate SciEx on datasets spanning three scientific topics for its ability to extract fine-grained information accurately and consistently. Our findings provide practical insights into both the strengths and limitations of current LLM-based pipelines.
We construct automata with input(s) in base $k$ recognizing some basic relations and study their number of states. We also consider some basic operations on $k$-automatic sequences and discuss their state complexity. We find a relationship between subword complexity of the interior sequence $(h'(i))_{i \geq 0}$ and state complexity of the linear subsequence $(h(ni+c))_{i \geq 0}$. We resolve a recent question of Zantema and Bosma about linear subsequences of $k$-automatic sequences with input in most-significant-digit-first format. We also discuss the state complexity and runtime complexity of using a reasonable interpretation of Büchi arithmetic to actually construct some of the studied automata recognizing relations or carrying out operations on automatic sequences.
Vision-and-Language Navigation (VLN) requires robots to follow natural language instructions and navigate complex environments without prior maps. While recent vision-language large models demonstrate strong reasoning abilities, they often underperform task-specific panoramic small models in VLN tasks. To address this, we propose CLASH (Collaborative Large-Small Hierarchy), a VLN-CE framework that integrates a reactive small-model planner (RSMP) with a reflective large-model reasoner (RLMR). RSMP adopts a causal-learning-based dual-branch architecture to enhance generalization, while RLMR leverages panoramic visual prompting with chain-of-thought reasoning to support interpretable spatial understanding and navigation. We further introduce an uncertainty-aware collaboration mechanism (UCM) that adaptively fuses decisions from both models. For obstacle avoidance, in simulation, we replace the rule-based controller with a fully learnable point-goal policy, and in real-world deployment, we design a LiDAR-based clustering module for generating navigable waypoints and pair it with an online SLAM-based local controller. CLASH achieves state-of-the-art (SoTA) results (ranking 1-st) on the VLN-CE leaderboard, significantly improving SR and SPL on the test-unseen set over the previous SoTA methods. Real-world experiments demonstrate CLASH's strong robustness, validating its effectiveness in both simulation and deployment scenarios.
Robust adversarial reinforcement learning has emerged as an effective paradigm for training agents to handle uncertain disturbance in real environments, with critical applications in sequential decision-making domains such as autonomous driving and robotic control. Within this paradigm, agent training is typically formulated as a zero-sum Markov game between a protagonist and an adversary to enhance policy robustness. However, the trainable nature of the adversary inevitably induces non-stationarity in the learning dynamics, leading to exacerbated training instability and convergence difficulties, particularly in high-dimensional complex environments. In this paper, we propose a novel approach, Uncertainty-Adaptive Critic Ensemble for robust adversarial Reinforcement learning (UACER), which consists of two components: 1) Diversified critic ensemble: A diverse set of K critic networks is employed in parallel to stabilize Q-value estimation in robust adversarial reinforcement learning, reducing variance and enhancing robustness compared to conventional single-critic designs. 2) Time-varying Decay Uncertainty (TDU) mechanism: Moving beyond simple linear combinations, we propose a variance-derived Q-value aggregation strategy that explicitly incorporates epistemic uncertainty to adaptively regulate the exploration-exploitation trade-off while stabilizing the training process. Comprehensive experiments across several challenging MuJoCo control problems validate the superior effectiveness of UACER, outperforming state-of-the-art methods in terms of overall performance, stability, and efficiency.
Prior approaches injecting camera control into diffusion models have focused on specific subsets of 4D consistency tasks: novel view synthesis, text-to-video with camera control, image-to-video, amongst others. Therefore, these fragmented approaches are trained on disjoint slices of available 3D/4D data. We introduce OmniView, a unified framework that generalizes across a wide range of 4D consistency tasks. Our method separately represents space, time, and view conditions, enabling flexible combinations of these inputs. For example, OmniView can synthesize novel views from static, dynamic, and multiview inputs, extrapolate trajectories forward and backward in time, and create videos from text or image prompts with full camera control. OmniView is competitive with task-specific models across diverse benchmarks and metrics, improving image quality scores among camera-conditioned diffusion models by up to 33\% in multiview NVS LLFF dataset, 60\% in dynamic NVS Neural 3D Video benchmark, 20\% in static camera control on RE-10K, and reducing camera trajectory errors by 4x in text-conditioned video generation. With strong generalizability in one model, OmniView demonstrates the feasibility of a generalist 4D video model. Project page is available at this https URL
Batteries are critical components in modern energy systems such as electric vehicles and power grid energy storage. Effective battery health management is essential for battery system safety, cost-efficiency, and sustainability. In this paper, we propose Pace, a physics-aware attentive temporal convolutional network for battery health estimation. Pace integrates raw sensor measurements with battery physics features derived from the equivalent circuit model. We develop three battery-specific modules, including dilated temporal blocks for efficient temporal encoding, chunked attention blocks for context modeling, and a dual-head output block for fusing short- and long-term battery degradation patterns. Together, the modules enable Pace to predict battery health accurately and efficiently in various battery usage conditions. In a large public dataset, Pace performs much better than existing models, achieving an average performance improvement of 6.5 and 2.0x compared to two best-performing baseline models. We further demonstrate its practical viability with a real-time edge deployment on a Raspberry Pi. These results establish Pace as a practical and high-performance solution for battery health analytics.
Person identification systems often rely on audio, visual, or behavioral cues, but real-world conditions frequently result in missing or degraded modalities. To address this challenge, we propose a multimodal person identification framework that utilizes gesture as a situational enhancer to supplement traditional modalities like voice and face. Our model employs a unified hybrid fusion strategy, integrating both feature-level and score-level information to maximize representational richness and decision accuracy. Specifically, it leverages multi-task learning to process modalities independently, followed by cross-attention and gated fusion mechanisms. Finally, a confidence-weighted strategy dynamically adapts to missing data, ensuring that our single classification head achieves optimal performance even in unimodal and bimodal scenarios. We evaluate our method on CANDOR, a newly introduced interview-based multimodal dataset, which we benchmark in this work for the first time. Our results demonstrate that the proposed trimodal system achieves 99.51% Top-1 accuracy on person identification tasks. In addition, we evaluate our model on the VoxCeleb1 dataset as a benchmark and reach 99.92% accuracy in bimodal mode, outperforming conventional approaches. Moreover, we show that our system maintains high accuracy even when one or two modalities are unavailable, making it a robust solution for real-world person recognition applications. The code and data for this work are publicly available.
Reusable software components, typically distributed as packages, are a central paradigm of modern software development. The JavaScript ecosystem serves as a prime example, offering millions of packages with their use being promoted as idiomatic. However, download statistics on npm raise security concerns as they indicate a high popularity of vulnerable package versions while their real prevalence on production websites remains unknown. Package version detection mechanisms fill this gap by extracting utilized packages and versions from observed artifacts on the web. Prior research focuses on mechanisms for either hand-selected popular packages in bundles or for single-file resources utilizing the global namespace. This does not allow for a thorough analysis of modern web applications' dependency update behavior at scale. In this work, we improve upon this by presenting Aletheia, a package-agnostic method which dissects JavaScript bundles to identify package versions through algorithms originating from the field of plagiarism detection. We show that this method clearly outperforms the existing approaches in practical settings. Furthermore, we crawl the Tranco top 100,000 domains to reveal that 5% - 20% of domains update their dependencies within 16 weeks. Surprisingly, from a longitudinal perspective, bundled packages are updated significantly faster than their CDN-included counterparts, with consequently up to 10 times fewer known vulnerable package versions included. Still, we observe indicators that few widespread vendors seem to be a major driving force behind timely updates, implying that quantitative measures are not painting a complete picture.
Providing timely and meaningful feedback remains a persistent challenge in higher education, especially in large courses where teachers must balance formative depth with scalability. Recent advances in Generative Artificial Intelligence (GenAI) offer new opportunities to support feedback processes while maintaining human oversight. This paper presents an study conducted within the AICoFe (AI-based Collaborative Feedback) system, which integrates teacher, peer, and self-assessments of engineering students' oral presentations. Using a validated rubric, 46 evaluation sets were analyzed to examine agreement, correlation, and bias across evaluators. The analyses revealed consistent overall alignment among sources but also systematic variations in scoring behavior, reflecting distinct evaluative perspectives. These findings informed the proposal of an enhanced GenAI model within AICoFe system, designed to integrate human assessments through weighted input aggregation, bias detection, and context-aware feedback generation. The study contributes empirical evidence and design principles for developing GenAI-based feedback systems that combine data-based efficiency with pedagogical validity and transparency.
Deep representations across modalities are inherently intertwined. In this paper, we systematically analyze the spectral characteristics of various semantic and pixel encoders. Interestingly, our study uncovers a highly inspiring and rarely explored correspondence between an encoder's feature spectrum and its functional role: semantic encoders primarily capture low-frequency components that encode abstract meaning, whereas pixel encoders additionally retain high-frequency information that conveys fine-grained detail. This heuristic finding offers a unifying perspective that ties encoder behavior to its underlying spectral structure. We define it as the Prism Hypothesis, where each data modality can be viewed as a projection of the natural world onto a shared feature spectrum, just like the prism. Building on this insight, we propose Unified Autoencoding (UAE), a model that harmonizes semantic structure and pixel details via an innovative frequency-band modulator, enabling their seamless coexistence. Extensive experiments on ImageNet and MS-COCO benchmarks validate that our UAE effectively unifies semantic abstraction and pixel-level fidelity into a single latent space with state-of-the-art performance.
High-mobility wireless communication systems suffer from severe Doppler spread and multi-path delay, which degrade the reliability and spectral efficiency of conventional modulation schemes. Orthogonal time frequency space (OTFS) modulation offers strong robustness in such environments by representing symbols in the delay-Doppler (DD) domain, while faster-than-Nyquist (FTN) signaling can further enhance spectral efficiency through intentional symbol packing. Meanwhile, reconfigurable intelligent surfaces (RIS) provide a promising means to improve link quality via passive beamforming. Motivated by these advantages, we propose a novel RIS-empowered OTFS modulation with FTN signaling (RIS-OTFS-FTN) scheme. First, we establish a unified DD-domain input-output relationship that jointly accounts for RIS passive beamforming, FTN-induced inter-symbol interference, and DD-domain channel characteristics. Based on this model, we provide comprehensive analytical performance for the frame error rate, spectral efficiency, and peak-to-average power ratio (PAPR), etc. Furthermore, a practical RIS phase adjustment strategy with quantized phase selection is designed to maximize the effective channel gain. Extensive Monte Carlo simulations under a standardized extended vehicular A (EVA) channel model validate the theoretical results and provide key insights into the trade-offs among spectral efficiency, PAPR, input back-off (IBO), and error performance, with some interesting this http URL proposed RIS-OTFS-FTN scheme demonstrates notable performance gains in both reliability and spectral efficiency, offering a viable solution for future high-mobility and spectrum-constrained wireless systems.
We present the surprising finding that a language model's reasoning capabilities can be improved by training on synthetic datasets of chain-of-thought (CoT) traces from more capable models, even when all of those traces lead to an incorrect final answer. Our experiments show this approach can yield better performance on reasoning tasks than training on human-annotated datasets. We hypothesize that two key factors explain this phenomenon: first, the distribution of synthetic data is inherently closer to the language model's own distribution, making it more amenable to learning. Second, these `incorrect' traces are often only partially flawed and contain valid reasoning steps from which the model can learn. To further test the first hypothesis, we use a language model to paraphrase human-annotated traces -- shifting their distribution closer to the model's own distribution -- and show that this improves performance. For the second hypothesis, we introduce increasingly flawed CoT traces and study to what extent models are tolerant to these flaws. We demonstrate our findings across various reasoning domains like math, algorithmic reasoning and code generation using MATH, GSM8K, Countdown and MBPP datasets on various language models ranging from 1.5B to 9B across Qwen, Llama, and Gemma models. Our study shows that curating datasets that are closer to the model's distribution is a critical aspect to consider. We also show that a correct final answer is not always a reliable indicator of a faithful reasoning process.
In most existing embodied navigation tasks, instructions are well-defined and unambiguous, such as instruction following and object searching. Under this idealized setting, agents are required solely to produce effective navigation outputs conditioned on vision and language inputs. However, real-world navigation instructions are often vague and ambiguous, requiring the agent to resolve uncertainty and infer user intent through active dialog. To address this gap, we propose Interactive Instance Goal Navigation (IIGN), a task that requires agents not only to generate navigation actions but also to produce language outputs via active dialog, thereby aligning more closely with practical settings. IIGN extends Instance Goal Navigation (IGN) by allowing agents to freely consult an oracle in natural language while navigating. Building on this task, we present the Vision Language-Language Navigation (VL-LN) benchmark, which provides a large-scale, automatically generated dataset and a comprehensive evaluation protocol for training and assessing dialog-enabled navigation models. VL-LN comprises over 41k long-horizon dialog-augmented trajectories for training and an automatic evaluation protocol with an oracle capable of responding to agent queries. Using this benchmark, we train a navigation model equipped with dialog capabilities and show that it achieves significant improvements over the baselines. Extensive experiments and analyses further demonstrate the effectiveness and reliability of VL-LN for advancing research on dialog-enabled embodied navigation. Code and dataset: this https URL
Neural scaling laws have become foundational for optimizing large language model (LLM) training, yet they typically assume a single dense model output. This limitation effectively overlooks "Familial models, a transformative paradigm essential for realizing ubiquitous intelligence across heterogeneous device-edge-cloud hierarchies. Transcending static architectures, familial models integrate early exits with relay-style inference to spawn G deployable sub-models from a single shared backbone. In this work, we theoretically and empirically extend the scaling law to capture this "one-run, many-models" paradigm by introducing Granularity (G) as a fundamental scaling variable alongside model size (N) and training tokens (D). To rigorously quantify this relationship, we propose a unified functional form L(N, D, G) and parameterize it using large-scale empirical runs. Specifically, we employ a rigorous IsoFLOP experimental design to strictly isolate architectural impact from computational scale. Across fixed budgets, we systematically sweep model sizes (N) and granularities (G) while dynamically adjusting tokens (D). This approach effectively decouples the marginal cost of granularity from the benefits of scale, ensuring high-fidelity parameterization of our unified scaling law. Our results reveal that the granularity penalty follows a multiplicative power law with an extremely small exponent. Theoretically, this bridges fixed-compute training with dynamic architectures. Practically, it validates the "train once, deploy many" paradigm, demonstrating that deployment flexibility is achievable without compromising the compute-optimality of dense baselines.
We present PFP, a neural network structure to compress long videos into short contexts, with an explicit pretraining objective to preserve the high-frequency details of single frames at arbitrary temporal positions. The baseline model can compress a 20-second video into a context at about 5k length, where random frames can be retrieved with perceptually preserved appearances. Such pretrained models can be directly fine-tuned as memory encoders for autoregressive video models, enabling long history memory with low context cost and relatively low fidelity loss. We evaluate the framework with ablative settings and discuss the trade-offs of possible neural architecture designs.
Multilingual large language models achieve impressive cross-lingual performance despite largely monolingual pretraining. While bilingual data in pretraining corpora is widely believed to enable these abilities, details of its contributions remain unclear. We investigate this question by pretraining models from scratch under controlled conditions, comparing the standard web corpus with a monolingual-only version that removes all multilingual documents. Despite constituting only 2% of the corpus, removing bilingual data causes translation performance to drop 56% in BLEU, while behaviour on cross-lingual QA and general reasoning tasks remains stable, with training curves largely overlapping the baseline. To understand this asymmetry, we categorize bilingual data into parallel (14%), code-switching (72%), and miscellaneous documents (14%) based on the semantic relevance of content in different languages. We then conduct granular ablations by reintroducing parallel or code-switching data into the monolingual-only corpus. Our experiments reveal that parallel data almost fully restores translation performance (91% of the unfiltered baseline), whereas code-switching contributes minimally. Other cross-lingual tasks remain largely unaffected by either type. These findings reveal that translation critically depends on systematic token-level alignments from parallel data, whereas cross-lingual understanding and reasoning appear to be achievable even without bilingual data.
Language generation maps a rich, high-dimensional internal state to a single token sequence. We study this many-to-one mapping through the lens of intention collapse: the projection from an internal intention space I to an external language space L. We introduce three cheap, model-agnostic metrics computed on a pre-collapse state I: (i) intention entropy Hint(I), (ii) effective dimensionality deff(I), and (iii) recoverability Recov(I), operationalized as probe AUROC for predicting eventual success. We evaluate these metrics in a 3x3 study across models (Mistral-7B, LLaMA-3.1-8B, Qwen-2.5-7B) and benchmarks (GSM8K, ARC-Challenge, AQUA-RAT), comparing baseline, chain-of-thought (CoT), and a babble control (n=200 items per cell). CoT increases average accuracy from 34.2% to 47.3% (+13.1 pp), driven by large gains on GSM8K but consistent degradations on ARC-Challenge. Across models, CoT induces distinct entropy regimes relative to baseline, dH = Hint(CoT) - Hint(Base): Mistral shows dH < 0 (lower-entropy CoT), whereas LLaMA shows dH > 0 (higher-entropy CoT), highlighting heterogeneity in CoT-induced internal uncertainty. Finally, probe AUROC is significantly above chance in a subset of settings and can dissociate from behavioral accuracy (e.g., high AUROC alongside lower CoT accuracy on ARC-Challenge for Qwen), suggesting that informative internal signal is not always reliably converted into a final discrete decision under constrained response formats.
Introduction: Heart failure with preserved ejection fraction (HFpEF) arises from diverse comorbidities and progresses through prolonged subclinical stages, making early diagnosis and prognosis difficult. Current echocardiography-based Artificial Intelligence (AI) models focus primarily on binary HFpEF detection in humans and do not provide comorbidity-specific phenotyping or temporal estimates of disease progression towards decompensation. We aimed to develop a unified AI framework, CardioMOD-Net, to perform multiclass diagnosis and continuous prediction of HFpEF onset directly from standard echocardiography cine loops in preclinical models. Methods: Mouse echocardiography videos from four groups were used: control (CTL), hyperglycaemic (HG), obesity (OB), and systemic arterial hypertension (SAH). Two-dimensional parasternal long-axis cine loops were decomposed using Higher Order Dynamic Mode Decomposition (HODMD) to extract temporal features for downstream analysis. A shared latent representation supported Vision Transformers, one for a classifier for diagnosis and another for a regression module for predicting the age at HFpEF onset. Results: Overall diagnostic accuracy across the four groups was 65%, with all classes exceeding 50% accuracy. Misclassifications primarily reflected early-stage overlap between OB or SAH and CTL. The prognostic module achieved a root-mean-square error of 21.72 weeks for time-to-HFpEF prediction, with OB and SAH showing the most accurate estimates. Predicted HFpEF onset closely matched true distributions in all groups. Discussion: This unified framework demonstrates that multiclass phenotyping and continuous HFpEF onset prediction can be obtained from a single cine loop, even under small-data conditions. The approach offers a foundation for integrating diagnostic and prognostic modelling in preclinical HFpEF research.
We study data-driven construction of spatial discretizations for the one-dimensional Maxwell system. Using high-fidelity training data from a spectral discretization, we learn a \emph{linear convolution stencil} that approximates the spatial derivative operator in Maxwell's equations. We formulate a convex quadratic program for the stencil coefficients with linear constraints that enforce skew-adjointness of the discrete derivative; these constraints guarantee a semi-discrete electromagnetic energy identity and yield a CFL condition expressed directly in terms of the stencil's Fourier symbol. We compare several convex solvers for the resulting quadratic program -- projected gradient, Nesterov-accelerated gradient, ADMM, and an interior-point reference implemented in CVXPY -- and evaluate the learned operators in time-dependent Maxwell simulations using a Crank--Nicolson (CN) discretization. Numerical experiments, including cases with nonstandard target operators and noisy training data, show that (i) energy-constrained learned stencils achieve accuracy comparable to standard central differences while exactly preserving the discrete electromagnetic energy under CN time-stepping, and (ii) ADMM and interior-point solvers produce nearly identical operators, with ADMM offering a favorable tradeoff between accuracy, constraint satisfaction, and runtime.
Replication packages are crucial for enabling transparency, validation, and reuse in software engineering (SE) research. While artifact sharing is now a standard practice and even expected at premier SE venues such as ICSE, the practical usability of these replication packages remains underexplored. In particular, there is a marked lack of studies that comprehensively examine the executability and reproducibility of replication packages in SE research. In this paper, we aim to fill this gap by evaluating 100 replication packages published as part of ICSE proceedings over the past decade (2015--2024). We assess the (1) executability of the replication packages, (2) efforts and modifications required to execute them, (3) challenges that prevent executability, and (4) reproducibility of the original findings. We spent approximately 650 person-hours in total executing the artifacts and reproducing the study findings. Our findings reveal that only 40\% of the 100 evaluated artifacts were executable, of which 32.5\% (13 out of 40) ran without any modification. Regarding effort levels, 17.5\% (7 out of 40) required low effort, while 82.5\% (33 out of 40) required moderate to high effort to execute successfully. We identified five common types of modifications and 13 challenges leading to execution failure, spanning environmental, documentation, and structural issues. Among the executable artifacts, only 35\% (14 out of 40) reproduced the original results. These findings highlight a notable gap between artifact availability, executability, and reproducibility. Our study proposes three actionable guidelines to improve the preparation, documentation, and review of research artifacts, thereby strengthening the rigor and sustainability of open science practices in SE research.
We present Connection-Aware Motif Sequencing (CamS), a graph-to-sequence representation that enables decoder-only Transformers to learn molecular graphs via standard next-token prediction (NTP). For molecular property prediction, SMILES-based NTP scales well but lacks explicit topology, whereas graph-native masked modeling captures connectivity but risks disrupting the pivotal chemical details (e.g., activity cliffs). CamS bridges this gap by serializing molecular graphs into structure-rich causal sequences. CamS first mines data-driven connection-aware motifs. It then serializes motifs via scaffold-rooted breadth-first search (BFS) to establish a stable core-to-periphery order. Crucially, CamS enables hierarchical modeling by concatenating sequences from fine to coarse motif scales, allowing the model to condition global scaffolds on dense, uncorrupted local structural evidence. We instantiate CamS-LLaMA by pre-training a vanilla LLaMA backbone on CamS sequences. It achieves state-of-the-art performance on MoleculeNet and the activity-cliff benchmark MoleculeACE, outperforming both SMILES-based language models and strong graph baselines. Interpretability analysis confirms that our multi-scale causal serialization effectively drives attention toward cliff-determining differences.
Oblivious load-balancing in networks involves routing traffic from sources to destinations using predetermined routes independent of the traffic, so that the maximum load on any link in the network is minimized. We investigate oblivious load-balancing schemes for a $N\times N$ torus network under sparse traffic where there are at most $k$ active source-destination pairs. We are motivated by the problem of load-balancing in large-scale LEO satellite networks, which can be modelled as a torus, where the traffic is known to be sparse and localized to certain hotspot areas. We formulate the problem as a linear program and show that no oblivious routing scheme can achieve a worst-case load lower than approximately $\frac{\sqrt{2k}}{4}$ when $1<k \leq N^2/2$ and $\frac{N}{4}$ when $N^2/2\leq k\leq N^2$. Moreover, we demonstrate that the celebrated Valiant Load Balancing scheme is suboptimal under sparse traffic and construct an optimal oblivious load-balancing scheme that achieves the lower bound. Further, we discover a $\sqrt{2}$ multiplicative gap between the worst-case load of a non-oblivious routing and the worst-case load of any oblivious routing. The results can also be extended to general $N\times M$ tori with unequal link capacities along the vertical and horizontal directions.
Recent research on medical MLLMs has gradually shifted its focus from image-level understanding to fine-grained, pixel-level comprehension. Although segmentation serves as the foundation for pixel-level understanding, existing approaches face two major challenges. First, they introduce implicit segmentation tokens and require simultaneous fine-tuning of both the MLLM and external pixel decoders, which increases the risk of catastrophic forgetting and limits generalization to out-of-domain scenarios. Second, most methods rely on single-pass reasoning and lack the capability to iteratively refine segmentation results, leading to suboptimal performance. To overcome these limitations, we propose a novel agentic MLLM, named IBISAgent, that reformulates segmentation as a vision-centric, multi-step decision-making process. IBISAgent enables MLLMs to generate interleaved reasoning and text-based click actions, invoke segmentation tools, and produce high-quality masks without architectural modifications. By iteratively performing multi-step visual reasoning on masked image features, IBISAgent naturally supports mask refinement and promotes the development of pixel-level visual reasoning capabilities. We further design a two-stage training framework consisting of cold-start supervised fine-tuning and agentic reinforcement learning with tailored, fine-grained rewards, enhancing the model's robustness in complex medical referring and reasoning segmentation tasks. Extensive experiments demonstrate that IBISAgent consistently outperforms both closed-source and open-source SOTA methods. All datasets, code, and trained models will be released publicly.
Large language models (LLMs) are increasingly applied in specialized domains such as finance and healthcare, where they introduce unique safety risks. Domain-specific datasets of harmful prompts remain scarce and still largely rely on manual construction; public datasets mainly focus on explicit harmful prompts, which modern LLM defenses can often detect and refuse. In contrast, implicit harmful prompts-expressed through indirect domain knowledge-are harder to detect and better reflect real-world threats. We identify two challenges: transforming domain knowledge into actionable constraints and increasing the implicitness of generated harmful prompts. To address them, we propose an end-to-end framework that first performs knowledge-graph-guided harmful prompt generation to systematically produce domain-relevant prompts, and then applies dual-path obfuscation rewriting to convert explicit harmful prompts into implicit variants via direct and context-enhanced rewriting. This framework yields high-quality datasets combining strong domain relevance with implicitness, enabling more realistic red-teaming and advancing LLM safety research. We release our code and datasets at GitHub.
Vehicle computing represents a fundamental shift in how autonomous vehicles are designed and deployed, transforming them from isolated transportation systems into mobile computing platforms that support both safety-critical, real-time driving and data-centric services. In this setting, vehicles simultaneously support real-time driving pipelines and a growing set of data-driven applications, placing increased responsibility on the vehicle operating system to coordinate computation, data movement, storage, and access. These demands highlight recurring system considerations related to predictable execution, data and execution protection, efficient handling of high-rate sensor data, and long-term system evolvability, commonly summarized as Safety, Security, Efficiency, and Extensibility (SSEE). Existing vehicle operating systems and runtimes address these concerns in isolation, resulting in fragmented software stacks that limit coordination between autonomy workloads and vehicle data services. This paper presents DAVOS, the Dependable Autonomous Vehicle Operating System, a unified vehicle operating system architecture designed for the vehicle computing context. DAVOS provides a cohesive operating system foundation that supports both real-time autonomy and extensible vehicle computing within a single system framework.
In the analysis of complex physical systems, the objective often extends beyond merely computing a numerical solution to capturing the precise crossover between different regimes and extracting parameters containing meaningful information. However, standard numerical solvers and conventional deep learning approaches, such as Physics-Informed Neural Networks (PINNs), typically operate as black boxes that output solution fields without disentangling the solution into its interpretable constituent parts. In this work, we propose GlueNN, a physics-informed learning framework that decomposes the global solution into interpretable, patchwise analytic components. Rather than approximating the solution directly, GlueNN promotes the integration constants of local asymptotic expansions to learnable, scale-dependent coefficient functions. By constraining these coefficients with the differential equation, the network effectively performs regime transition, smoothly interpolating between asymptotic limits without requiring ad hoc boundary matching. We demonstrate that this coefficient-centric approach reproduces accurate global solutions in various examples and thus directly extracts physical information that is not explicitly available through standard numerical integration.
Attention mechanisms have become a core component of deep learning models, with Channel Attention and Spatial Attention being the two most representative architectures. Current research on their fusion strategies primarily bifurcates into sequential and parallel paradigms, yet the selection process remains largely empirical, lacking systematic analysis and unified principles. We systematically compare channel-spatial attention combinations under a unified framework, building an evaluation suite of 18 topologies across four classes: sequential, parallel, multi-scale, and residual. Across two vision and nine medical datasets, we uncover a "data scale-method-performance" coupling law: (1) in few-shot tasks, the "Channel-Multi-scale Spatial" cascaded structure achieves optimal performance; (2) in medium-scale tasks, parallel learnable fusion architectures demonstrate superior results; (3) in large-scale tasks, parallel structures with dynamic gating yield the best performance. Additionally, experiments indicate that the "Spatial-Channel" order is more stable and effective for fine-grained classification, while residual connections mitigate vanishing gradient problems across varying data scales. We thus propose scenario-based guidelines for building future attention modules. Code is open-sourced at this https URL.
Current multi-agent LLM frameworks rely on explicit orchestration patterns borrowed from human organizational structures: planners delegate to executors, managers coordinate workers, and hierarchical control flow governs agent interactions. These approaches suffer from coordination overhead that scales poorly with agent count and task complexity. We propose a fundamentally different paradigm inspired by natural coordination mechanisms: agents operate locally on a shared artifact, guided only by pressure gradients derived from measurable quality signals, with temporal decay preventing premature convergence. We formalize this as optimization over a pressure landscape and prove convergence guarantees under mild conditions. Empirically, on meeting room scheduling across 1,350 trials, pressure-field coordination outperforms all baselines: 48.5% aggregate solve rate versus 12.6% for conversation-based coordination, 1.5% for hierarchical control, and 0.4% for sequential and random baselines (all pairwise comparisons p < 0.001). Temporal decay is essential: disabling it reduces solve rate by 10 percentage points. On easy problems, pressure-field achieves 86.7% solve rate. The approach maintains consistent performance from 1 to 4 agents. Implicit coordination through shared pressure gradients outperforms explicit hierarchical control, suggesting that constraint-driven emergence offers a simpler and more effective foundation for multi-agent AI.
Scaling large models requires optimization strategies that ensure rapid convergence grounded in stability. Maximal Update Parametrization ($\boldsymbol{\mu}$P) provides a theoretical safeguard for width-invariant $\Theta(1)$ activation control, whereas emerging optimizers like Muon are only ``half-aligned'' with these constraints: they control updates but allow weights to drift. To address this limitation, we introduce the \textbf{Spectral Sphere Optimizer (SSO)}, which enforces strict module-wise spectral constraints on both weights and their updates. By deriving the steepest descent direction on the spectral sphere, SSO realizes a fully $\boldsymbol{\mu}$P-aligned optimization process. To enable large-scale training, we implement SSO as an efficient parallel algorithm within Megatron. Through extensive pretraining on diverse architectures, including Dense 1.7B, MoE 8B-A1B, and 200-layer DeepNet models, SSO consistently outperforms AdamW and Muon. Furthermore, we observe significant practical stability benefits, including improved MoE router load balancing, suppressed outliers, and strictly bounded activations.
The ubiquity of machine learning (ML) and the demand for ever-larger models bring an increase in energy consumption and environmental impact. However, little is known about the energy scaling laws in ML, and existing research focuses on training cost -- ignoring the larger cost of inference. Furthermore, tools for measuring the energy consumption of ML do not provide actionable feedback. To address these gaps, we developed Energy Consumption Optimiser (ECOpt): a hyperparameter tuner that optimises for energy efficiency and model performance. ECOpt quantifies the trade-off between these metrics as an interpretable Pareto frontier. This enables ML practitioners to make informed decisions about energy cost and environmental impact, while maximising the benefit of their models and complying with new regulations. Using ECOpt, we show that parameter and floating-point operation counts can be unreliable proxies for energy consumption, and observe that the energy efficiency of Transformer models for text generation is relatively consistent across hardware. These findings motivate measuring and publishing the energy metrics of ML models. We further show that ECOpt can have a net positive environmental impact and use it to uncover seven models for CIFAR-10 that improve upon the state of the art, when considering accuracy and energy efficiency together.
Multi-constraint planning involves identifying, evaluating, and refining candidate plans while satisfying multiple, potentially conflicting constraints. Existing large language model (LLM) approaches face fundamental limitations in this domain. Pure reasoning paradigms, which rely on long natural language chains, are prone to inconsistency, error accumulation, and prohibitive cost as constraints compound. Conversely, LLMs combined with coding- or solver-based strategies lack flexibility: they often generate problem-specific code from scratch or depend on fixed solvers, failing to capture generalizable logic across diverse problems. To address these challenges, we introduce the Scalable COde Planning Engine (SCOPE), a framework that disentangles query-specific reasoning from generic code execution. By separating reasoning from execution, SCOPE produces solver functions that are consistent, deterministic, and reusable across queries while requiring only minimal changes to input parameters. SCOPE achieves state-of-the-art performance while lowering cost and latency. For example, with GPT-4o, it reaches 93.1% success on TravelPlanner, a 61.6% gain over the best baseline (CoT) while cutting inference cost by 1.4x and time by ~4.67x. Code is available at this https URL.
High-level synthesis (HLS) is a powerful tool for developing efficient hardware accelerators that rely on specialized memory systems to achieve sufficient on-chip data reuse and off-chip bandwidth utilization. However, even with HLS, designing such systems still requires careful manual tuning, as automatic optimizations provided by existing tools are highly sensitive to programming style and often lack transparency. To address these issues, we present a formal translation framework based on relational Hoare logic, which enables robust and transparent transformations. Our method recognizes complex memory access patterns in naïve HLS programs and automatically transforms them by inserting on-chip buffers to enforce linear access to off-chip memory, and by replacing non-sequential processing with stream processing, while preserving program semantics. Experiments using our prototype translator, combined with an off-the-shelf HLS compiler and a real FPGA board, have demonstrated significant performance improvements.
Recent research suggests that looped Transformers have superior reasoning capabilities compared to standard deep architectures. Current approaches to training single-head looped architectures on benchmark tasks frequently fail or yield suboptimal performance due to a highly non-convex and irregular loss landscape. In these settings, optimization often stagnates in poor local minima and saddle points of the loss landscape, preventing the model from discovering the global minimum point. The internal mechanisms of these single-head looped transformer models remain poorly understood, and training them from scratch remains a significant challenge. In this paper, we propose a novel training framework that leverages Tsallis entropy and Hamiltonian dynamics to transform the geometry of the loss landscape. By treating the parameter updates as a physical flow, we successfully trained a single-head looped Transformer with model dimension $d = 8$ to solve induction head task with input sequence length of 1000 tokens. This success reveals the internal mechanism behind the superior reasoning capability.
Large Language Models (LLMs), despite their remarkable capabilities across NLP tasks, struggle with phonologically-grounded phenomena like rhyme detection and generation. This is even more evident in lower-resource languages such as Modern Greek. In this paper, we present a hybrid system that combines LLMs with deterministic phonological algorithms to achieve accurate rhyme identification/analysis and generation. Our approach implements a comprehensive taxonomy of Greek rhyme types, including Pure, Rich, Imperfect, Mosaic, and Identical Pre-rhyme Vowel (IDV) patterns, and employs an agentic generation pipeline with phonological verification. We evaluate multiple prompting strategies (zero-shot, few-shot, Chain-of-Thought, and RAG-augmented) across several LLMs including Claude 3.7 and 4.5, GPT-4o, Gemini 2.0 and open-weight models like Llama 3.1 8B and 70B and Mistral Large. Results reveal a significant "Reasoning Gap": while native-like models (Claude 3.7) perform intuitively (40\% accuracy in identification), reasoning-heavy models (Claude 4.5) achieve state-of-the-art performance (54\%) only when prompted with Chain-of-Thought. Most critically, pure LLM generation fails catastrophically (under 4\% valid poems), while our hybrid verification loop restores performance to 73.1\%. We release our system and a corpus of 40,000+ rhymes, derived from the Anemoskala and Interwar Poetry corpora, to support future research.
Vision-language models (VLMs) have advanced rapidly, but their ability to capture spatial relationships remains a blindspot. Current VLMs are typically built with contrastive language-image pretraining (CLIP) style image encoders. The training recipe often flattens images into 1D patch sequences, discarding the 2D structure necessary for spatial reasoning. We argue that this lack of spatial awareness is a missing dimension in VLM design and a bottleneck for applications requiring spatial grounding, such as robotics and embodied AI. To address this, we investigate (i) image encoders trained with alternative objectives and (ii) 2D positional encodings. Our experiments show that these architectural choices can lead to improved spatial reasoning on several benchmarks.
This paper presents several efficient decision procedures for trace equivalence of GKAT automata, which make use of on-the-fly symbolic techniques via SAT solvers. To demonstrate applicability of our algorithms, we designed symbolic derivatives for CF-GKAT, a practical system based on GKAT designed to validate control-flow transformations. We implemented the algorithms in Rust and evaluated them on both randomly generated benchmarks and real-world control-flow transformations. Indeed, we observed order-of-magnitude performance improvements against existing implementations for both KAT and CF-GKAT. Notably, our experiments also revealed a bug in Ghidra, an industry-standard decompiler, highlighting the practical viability of these systems.
In this paper, we introduce monoidal rewriting systems (MRS), an abstraction of string rewriting in which reductions are defined over an arbitrary ambient monoid rather than a free monoid of words. This shift is partly motivated by logic: the class of free monoids is not first-order axiomatizable, so "working in the free setting" cannot be treated internally when applying first-order methods to rewriting presentations. To analyze these systems categorically, we define $\mathbf{NCRS_2}$ as the 2-category of Noetherian Confluent MRS. We then prove the existence of a canonical biadjunction between $\mathbf{NCRS_2}$ and $\mathbf{Mon}$. Finally, we classify all Noetherian Confluent MRS that present a given fixed monoid. For this, we introduce Generalized Elementary Tietze Transformations (GETTs) and prove that any two presentations of a monoid are connected by a (possibly infinite) sequence of these transformations, yielding a complete characterization of generating systems up to GETT-equivalence.
We present a pseudocode algorithm for translating our (Elementary) Mathematical Data Model schemes into relational ones and associated sets of non-relational constraints, used by MatBase, our intelligent data and knowledge base management system prototype. We prove that this algorithm is very fast, solid, complete, and optimal. We apply it to a mathematical scheme modeling the genealogical trees subuniverse. We also provide examples of SQL and VBA code for enforcing some of its non-relational constraints, as well as guidelines to develop code for enforcing such constraints.
Automated interlinear gloss prediction with neural networks is a promising approach to accelerate language documentation efforts. However, while state-of-the-art models like GlossLM achieve high scores on glossing benchmarks, user studies with linguists have found critical barriers to the usefulness of such models in real-world scenarios. In particular, existing models typically generate morpheme-level glosses but assign them to whole words without predicting the actual morpheme boundaries, making the predictions less interpretable and thus untrustworthy to human annotators. We conduct the first study on neural models that jointly predict interlinear glosses and the corresponding morphological segmentation from raw text. We run experiments to determine the optimal way to train models that balance segmentation and glossing accuracy, as well as the alignment between the two tasks. We extend the training corpus of GlossLM and pretrain PolyGloss, a family of seq2seq multilingual models for joint segmentation and glossing that outperforms GlossLM on glossing and beats various open-source LLMs on segmentation, glossing, and alignment. In addition, we demonstrate that PolyGloss can be quickly adapted to a new dataset via low-rank adaptation.
A key challenge in contact-rich dexterous manipulation is the need to jointly reason over geometry, kinematic constraints, and intricate, nonsmooth contact dynamics. End-to-end visuomotor policies bypass this structure, but often require large amounts of data, transfer poorly from simulation to reality, and generalize weakly across tasks/embodiments. We address those limitations by leveraging a simple insight: dexterous manipulation is inherently hierarchical - at a high level, a robot decides where to touch (geometry) and move the object (kinematics); at a low level it determines how to realize that plan through contact dynamics. Building on this insight, we propose a hierarchical RL--MPC framework in which a high-level reinforcement learning (RL) policy predicts a contact intention, a novel object-centric interface that specifies (i) an object-surface contact location and (ii) a post-contact object-level subgoal pose. Conditioned on this contact intention, a low-level contact-implicit model predictive control (MPC) optimizes local contact modes and replans with contact dynamics to generate robot actions that robustly drive the object toward each subgoal. We evaluate the framework on non-prehensile tasks, including geometry-generalized pushing and object 3D reorientation. It achieves near-100% success with substantially reduced data (10x less than end-to-end baselines), highly robust performance, and zero-shot sim-to-real transfer.
Interpretable graph learning has recently emerged as a popular research topic in machine learning. The goal is to identify the important nodes and edges of an input graph that are crucial for performing a specific graph reasoning task. A number of studies have been conducted in this area, and various benchmark datasets have been proposed to facilitate evaluation. Among them, one of the most challenging is the Spurious-Motif benchmark, introduced at ICLR 2022. The datasets in this synthetic benchmark are deliberately designed to include spurious correlations, making it particularly difficult for models to distinguish truly relevant structures from misleading patterns. As a result, existing methods exhibit significantly worse performance on this benchmark compared to others. In this paper, we focus on improving interpretability on the challenging Spurious-Motif datasets. We demonstrate that the self-reflection technique, commonly used in large language models to tackle complex tasks, can also be effectively adapted to enhance interpretability in datasets with strong spurious correlations. Specifically, we propose a self-reflection framework that can be integrated with existing interpretable graph learning methods. When such a method produces importance scores for each node and edge, our framework feeds these predictions back into the original method to perform a second round of evaluation. This iterative process mirrors how large language models employ self-reflective prompting to reassess their previous outputs. We further analyze the reasons behind this improvement from the perspective of graph representation learning, which motivates us to propose a fine-tuning training method based on this feedback mechanism.
Quality of Service (QoS) prediction is one of the most fundamental problems in service computing and personalized recommendation. In the problem, there is a set of users and services, each associated with a set of descriptive features. Interactions between users and services produce feedback values, typically represented as numerical QoS metrics such as response time or availability. Given the observed feedback for a subset of user-service pairs, the goal is to predict the QoS values for the remaining pairs. A key challenge in QoS prediction is the inherent sparsity of user-service interactions, as only a small subset of feedback values is typically observed. To address this, we propose a self-augmented strategy that leverages a model's own predictions for iterative refinement. In particular, we partially mask the predicted values and feed them back into the model to predict again. Building on this idea, we design a self-augmented mixture-of-experts model, where multiple expert networks iteratively and collaboratively estimate QoS values. We find that the iterative augmentation process naturally aligns with the MoE architecture by enabling inter-expert communication: in the second round, each expert receives the first-round predictions and refines its output accordingly. Experiments on benchmark datasets show that our method outperforms existing baselines and achieves competitive results.
Extractive summarization (ES) aims to generate a concise summary by selecting a subset of sentences from a document while maximizing relevance and minimizing redundancy. Although modern ES systems achieve high accuracy using powerful neural models, their deployment typically relies on CPU or GPU infrastructures that are energy-intensive and poorly suited for real-time inference in resource-constrained environments. In this work, we explore the feasibility of implementing McDonald-style extractive summarization on a low-power CMOS coupled oscillator-based Ising machine (COBI) that supports integer-valued, all-to-all spin couplings. We first propose a hardware-aware Ising formulation that reduces the scale imbalance between local fields and coupling terms, thereby improving robustness to coefficient quantization: this method can be applied to any problem formulation that requires k of n variables to be chosen. We then develop a complete ES pipeline including (i) stochastic rounding and iterative refinement to compensate for precision loss, and (ii) a decomposition strategy that partitions a large ES problem into smaller Ising subproblems that can be efficiently solved on COBI and later combined. Experimental results on the CNN/DailyMail dataset show that our pipeline can produce high-quality summaries using only integer-coupled Ising hardware with limited precision. COBI achieves 3-4.5x runtime speedups compared to a brute-force method, which is comparable to software Tabu search, and two to three orders of magnitude reductions in energy, while maintaining competitive summary quality. These results highlight the potential of deploying CMOS Ising solvers for real-time, low-energy text summarization on edge devices.
The Model Context Protocol (MCP) (MCP Community, 2025) has emerged as a widely used framework for enabling LLM-based agents to communicate with external tools and services. The original MCP implementation (Anthropic, 2024) relies on a Large Language Model (LLM) to decompose tasks and issue instructions to servers. In particular, the agents, models, and servers are stateless and do not have access to a global context. However, in tasks involving LLM-driven coordination, it is natural that a Shared Context Store (SCS) could improve the efficiency and coherence of multi-agent workflows by reducing redundancy and enabling knowledge transfer between servers. Thus, in this work, we design and assess the performance of a Context-Aware MCP (CA-MCP) that offloads execution logic to specialized MCP servers that read from and write to a shared context memory, allowing them to coordinate more autonomously in real time. In this design, context management serves as the central mechanism that maintains continuity across task executions by tracking intermediate states and shared variables, thereby enabling persistent collaboration among agents without repeated prompting. We present experiments showing that the CA-MCP can outperform the traditional MCP by reducing the number of LLM calls required for complex tasks and decreasing the frequency of response failures when task conditions are not satisfied. In particular, we conducted experiments on the TravelPlanner (Yang et al., 2024) and REALM-Bench (Geng & Chang, 2025) benchmark datasets and observed statistically significant results indicating the potential advantages of incorporating a shared context store via CA-MCP in LLM-driven multi-agent systems.
Causal discovery based on Independent Component Analysis (ICA) has achieved remarkable success through the LiNGAM framework, which exploits non-Gaussianity and independence of noise variables to identify causal order. However, classical LiNGAM methods rely on the strong assumption that there exists an ordering under which the noise terms are exactly independent, an assumption that is often violated in the presence of confounding. In this paper, we propose a general information-theoretic framework for causal order estimation that remains applicable under arbitrary confounding. Rather than imposing independence as a hard constraint, we quantify the degree of confounding by the multivariate mutual information among the noise variables. This quantity is decomposed into a sum of mutual information terms along a causal order and is estimated using Bayesian marginal likelihoods. The resulting criterion can be interpreted as Bayesian ICA for causal discovery, where causal order selection is formulated as a model selection problem over permutations. Under standard regularity conditions, we show that the proposed Bayesian mutual information estimator is consistent, with redundancy of order $O(\log n)$. To avoid non-identifiability caused by Gaussian noise, we employ non-Gaussian predictive models, including multivariate $t$ distributions, whose marginal likelihoods can be evaluated via MCMC. The proposed method recovers classical LiNGAM and DirectLiNGAM as limiting cases in the absence of confounding, while providing a principled ranking of causal orders when confounding is present. This establishes a unified, confounding-aware, and information-theoretically grounded extension of ICA-based causal discovery.
Gait recognition is emerging as a promising technology and an innovative field within computer vision, with a wide range of applications in remote human identification. However, existing methods typically rely on complex architectures to directly extract features from images and apply pooling operations to obtain sequence-level representations. Such designs often lead to overfitting on static noise (e.g., clothing), while failing to effectively capture dynamic motion regions, such as the arms and legs. This bottleneck is particularly challenging in the presence of intra-class variation, where gait features of the same individual under different environmental conditions are significantly distant in the feature space. To address the above challenges, we present a Languageguided and Motion-aware gait recognition framework, named LMGait. To the best of our knowledge, LMGait is the first method to introduce natural language descriptions as explicit semantic priors into the gait recognition task. In particular, we utilize designed gait-related language cues to capture key motion features in gait sequences. To improve cross-modal alignment, we propose the Motion Awareness Module (MAM), which refines the language features by adaptively adjusting various levels of semantic information to ensure better alignment with the visual representations. Furthermore, we introduce the Motion Temporal Capture Module (MTCM) to enhance the discriminative capability of gait features and improve the model's motion tracking ability. We conducted extensive experiments across multiple datasets, and the results demonstrate the significant advantages of our proposed network. Specifically, our model achieved accuracies of 88.5%, 97.1%, and 97.5% on the CCPG, SUSTech1K, and CASIAB datasets, respectively, achieving state-of-the-art performance. Homepage: this https URL
Reinforcement learning has become a central paradigm for improving LLM reasoning. However, existing methods use a single policy to produce both inference responses and training optimization trajectories. The objective conflict between generating stable inference responses and diverse training trajectories leads to insufficient exploration, which harms reasoning capability. In this paper, to address the problem, we propose R$^2$PO (Residual Rollout Policy Optimization), which introduces a lightweight Residual Rollout-Head atop the policy to decouple training trajectories from inference responses, enabling controlled trajectory diversification during training while keeping inference generation stable. Experiments across multiple benchmarks show that our method consistently outperforms baselines, achieving average accuracy gains of 3.4% on MATH-500 and 1.3% on APPS, while also reducing formatting errors and mitigating length bias for stable optimization. Our code is publicly available at this https URL.
Large Language Models have demonstrated a remarkable capability in natural language and program generation and software development. However, the source code generated by the LLMs does not always meet quality requirements and may fail to compile. Therefore, many studies evolve into agents that can reason about the problem before generating the source code for the solution. The goal of this paper is to study the degree to which such agents benefit from access to software development tools, in our case, a gcc compiler. We conduct a computational experiment on the RosettaCode dataset, on 699 programming tasks in C. We evaluate how the integration with a compiler shifts the role of the language model from a passive generator to an active agent capable of iteratively developing runnable programs based on feedback from the compiler. We evaluated 16 language models with sizes ranging from small (135 million) to medium (3 billion) and large (70 billion). Our results show that access to a compiler improved the compilation success by 5.3 to 79.4 percentage units in compilation without affecting the semantics of the generated program. Syntax errors dropped by 75%, and errors related to undefined references dropped by 87% for the tasks where the agents outperformed the baselines. We also observed that in some cases, smaller models with a compiler outperform larger models with a compiler. We conclude that it is essential for LLMs to have access to software engineering tools to enhance their performance and reduce the need for large models in software engineering, such as reducing our energy footprint.
Routing strives to connect all the Internet, but compete: political pressure threatens routing fragmentation; architectural changes such as private clouds, carrier-grade NAT, and firewalls make connectivity conditional; and commercial disputes create partial reachability for days or years. This paper suggests *persistent, partial reachability is fundamental to the Internet* and an underexplored problem. We first *derive a conceptual definition of the Internet core* based on connectivity, not authority. We identify *peninsulas*: persistent, partial connectivity; and *islands*: when computers are partitioned from the Internet core. Second, we develop algorithms to observe each across the Internet, and apply them to two existing measurement systems: Trinocular, where 6 locations observe 5M networks frequently, and RIPE Atlas, where 13k locations scan the DNS roots frequently. Cross-validation shows our findings are stable over *three years of data*, and consistent with as few as 3 geographically-distributed observers. We validate peninsulas and islands against CAIDA Ark, showing good recall (0.94) and bounding precision between 0.42 and 0.82. Finally, our work has broad practical impact: we show that *peninsulas are more common than Internet outages*. Factoring out peninsulas and islands as noise can *improve existing measurement systems*; their ``noise'' is $5\times$ to $9.7\times$ larger than the operational events in RIPE's DNSmon. We show that most peninsula events are routing transients (45\%), but most peninsula-time (90\%) is due to a few (7\%) long-lived events. Our work helps inform Internet policy and governance, with our neutral definition showing no single country or organization can unilaterally control the Internet core.
Social-physical human-robot interaction (spHRI) is difficult to study: building and programming robots that integrate multiple interaction modalities is costly and slow, while VR-based prototypes often lack physical contact, breaking users' visuo-tactile expectations. We present XR$^3$, a co-located dual-VR-headset platform for HRI research in which an attendee and a hidden operator share the same physical space while experiencing different virtual embodiments. The attendee sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body motion, head and gaze behavior, and facial expressions are mapped from the operator's tracked limbs and face signals. Because the operator is co-present and calibrated in the same coordinate frame, the operator can also touch the attendee, enabling perceived robot touch synchronized with the robot's visible hands. Finger and hand motion is mapped to the robot avatar using inverse kinematics to support precise contact. Beyond motion retargeting, XR$^3$ supports social retargeting of multiple nonverbal cues that can be experimentally varied while keeping physical interaction constant. We detail the system design and calibration, and demonstrate the platform in a touch-based Wizard-of-Oz study, lowering the barrier to prototyping and evaluating embodied, contact-based robot behaviors.
Industrial large-scale recommendation models (LRMs) face the challenge of jointly modeling long-range user behavior sequences and heterogeneous non-sequential features under strict efficiency constraints. However, most existing architectures employ a decoupled pipeline: long sequences are first compressed with a query-token based sequence compressor like LONGER, followed by fusion with dense features through token-mixing modules like RankMixer, which thereby limits both the representation capacity and the interaction flexibility. This paper presents HyFormer, a unified hybrid transformer architecture that tightly integrates long-sequence modeling and feature interaction into a single backbone. From the perspective of sequence modeling, we revisit and redesign query tokens in LRMs, and frame the LRM modeling task as an alternating optimization process that integrates two core components: Query Decoding which expands non-sequential features into Global Tokens and performs long sequence decoding over layer-wise key-value representations of long behavioral sequences; and Query Boosting which enhances cross-query and cross-sequence heterogeneous interactions via efficient token mixing. The two complementary mechanisms are performed iteratively to refine semantic representations across layers. Extensive experiments on billion-scale industrial datasets demonstrate that HyFormer consistently outperforms strong LONGER and RankMixer baselines under comparable parameter and FLOPs budgets, while exhibiting superior scaling behavior with increasing parameters and FLOPs. Large-scale online A/B tests in high-traffic production systems further validate its effectiveness, showing significant gains over deployed state-of-the-art models. These results highlight the practicality and scalability of HyFormer as a unified modeling framework for industrial LRMs.
GPU code optimization is a key performance bottleneck for HPC workloads as well as large-model training and inference. Although compiler optimizations and hand-written kernels can partially alleviate this issue, achieving near-hardware-limit performance still relies heavily on manual code refactoring and parameter tuning. Recent progress in LLM-agent-based kernel generation and optimization has been reported, yet many approaches primarily focus on direct code rewriting, where parameter choices are often implicit and hard to control, or require human intervention, leading to unstable performance gains. This paper introduces a template-based rewriting layer on top of an agent-driven iterative loop: kernels are semantically refactored into explicitly parameterizable templates, and template parameters are then optimized via search-based autotuning, yielding more stable and higher-quality speedups. Experiments on a set of real-world kernels demonstrate speedups exceeding 3x in the best case. We extract representative CUDA kernels from SGLang as evaluation targets; the proposed agentic tuner iteratively performs templating, testing, analysis, and planning, and leverages profiling feedback to execute constrained parameter search under hardware resource limits. Compared to agent-only direct rewriting, the template-plus-search design significantly reduces the randomness of iterative optimization, making the process more interpretable and enabling a more systematic approach toward high-performance configurations. The proposed method can be further extended to OpenCL, HIP, and other backends to deliver automated performance optimization for real production workloads.
Optimization benchmarks play a fundamental role in assessing algorithm performance; however, existing artificial benchmarks often fail to capture the diversity and irregularity of real-world problem structures, while benchmarks derived from real-world problems are costly and difficult to construct. To address these challenges, we propose an evolutionary automatic benchmark generation framework that leverages a large language model (LLM) as a generative operator, termed the LLM-driven evolutionary benchmark generator (LLM-EBG). In this framework, the LLM serves as an evolutionary operator that generates and evolves benchmark problems within a flexible, expressive representation space. As a case study, we generate unconstrained single-objective continuous minimization problems represented as mathematical expressions designed to induce significant performance differences between a genetic algorithm (GA) and differential evolution (DE). Experimental results show that LLM-EBG successfully produces benchmark problems in which the designated target algorithm consistently outperforms the comparative algorithm in more than 80\% of trials. Furthermore, exploratory landscape analysis reveals that benchmarks favoring GA are highly sensitive to variable scaling, demonstrating that the proposed framework can generate problems with distinct geometric characteristics that reflect the intrinsic search behaviors of different optimization algorithms.
Large language models (LLMs) possess extensive world knowledge, yet methods for effectively eliciting this knowledge remain underexplored. Nationality and region prediction tasks require understanding of not only linguistic features but also cultural and historical background, making LLM world knowledge particularly valuable. However, conventional LLM prompting methods rely on direct reasoning approaches, which have limitations in applying abstract linguistic rules. We propose LLM Associative Memory Agents (LAMA), a novel framework that leverages LLM world knowledge as associative memory. Rather than directly inferring nationality from names, LAMA recalls famous individuals with the same name and aggregates their nationalities through indirect reasoning. A dual-agent architecture comprising a Person Agent and a Media Agent, specialized in different knowledge domains, recalls famous individuals in parallel, generating Top-1 predictions through voting and Top-K predictions through conditional completion. On a 99-country nationality prediction task, LAMA achieved 0.817 accuracy, substantially outperforming conventional LLM prompting methods and neural models. Our experiments reveal that LLMs exhibit higher reliability in recalling concrete examples than in abstract reasoning, that recall-based approaches are robust to low-frequency nationalities independent of data frequency distributions, and that the dual-agent architecture functions complementarily to produce synergistic effects. These results demonstrate the effectiveness of a new multi-agent system that retrieves and aggregates LLM knowledge rather than prompting reasoning.
Dengue, a mosquito-borne disease, continues to pose a persistent public health challenge in urban areas, particularly in tropical regions such as Singapore. Effective and affordable control requires anticipating where transmission risks are likely to emerge so that interventions can be deployed proactively rather than reactively. This study introduces a novel framework that uncovers and exploits latent transmission links between urban regions, mined directly from publicly available dengue case data. Instead of treating cases as isolated reports, we model how hotspot formation in one area is influenced by epidemic dynamics in neighboring regions. While mosquito movement is highly localized, long-distance transmission is often driven by human mobility, and in our case study, the learned network aligns closely with commuting flows, providing an interpretable explanation for citywide spread. These hidden links are optimized through gradient descent and used not only to forecast hotspot status but also to verify the consistency of spreading patterns, by examining the stability of the inferred network across consecutive weeks. Case studies on Singapore during 2013-2018 and 2020 show that four weeks of hotspot history are sufficient to achieve an average F-score of 0.79. Importantly, the learned transmission links align with commuting flows, highlighting the interpretable interplay between hidden epidemic spread and human mobility. By shifting from simply reporting dengue cases to mining and validating hidden spreading dynamics, this work transforms open web-based case data into a predictive and explanatory resource. The proposed framework advances epidemic modeling while providing a scalable, low-cost tool for public health planning, early intervention, and urban resilience.
Malware often uses obfuscation to hinder security analysis. Among these techniques, virtualization-based obfuscation is particularly strong because it protects programs by translating original instructions into attacker-defined virtual machine (VM) bytecode, producing long and complex code that is difficult to analyze and deobfuscate. This paper aims to identify the structural components of virtualization-based obfuscation through static analysis. By examining the execution model of obfuscated code, we define and detect the key elements required for deobfuscation-namely the dispatch routine, handler blocks, and the VM region-using LLVM IR. Experimental results show that, in the absence of compiler optimizations, the proposed LLVM Pass successfully detects all core structures across major virtualization options, including switch, direct, and indirect modes.
We introduce GazeD, a new 3D gaze estimation method that jointly provides 3D gaze and human pose from a single RGB image. Leveraging the ability of diffusion models to deal with uncertainty, it generates multiple plausible 3D gaze and pose hypotheses based on the 2D context information extracted from the input image. Specifically, we condition the denoising process on the 2D pose, the surroundings of the subject, and the context of the scene. With GazeD we also introduce a novel way of representing the 3D gaze by positioning it as an additional body joint at a fixed distance from the eyes. The rationale is that the gaze is usually closely related to the pose, and thus it can benefit from being jointly denoised during the diffusion process. Evaluations across three benchmark datasets demonstrate that GazeD achieves state-of-the-art performance in 3D gaze estimation, even surpassing methods that rely on temporal information. Project details will be available at this https URL.
The pursuit of real-time agentic interaction has driven interest in Diffusion-based Large Language Models (dLLMs) as alternatives to auto-regressive backbones, promising to break the sequential latency bottleneck. However, does such efficiency gains translate into effective agentic behavior? In this work, we present a comprehensive evaluation of dLLMs (e.g., LLaDA, Dream) across two distinct agentic paradigms: Embodied Agents (requiring long-horizon planning) and Tool-Calling Agents (requiring precise formatting). Contrary to the efficiency hype, our results on Agentboard and BFCL reveal a "bitter lesson": current dLLMs fail to serve as reliable agentic backbones, frequently leading to systematically failure. (1) In Embodied settings, dLLMs suffer repeated attempts, failing to branch under temporal feedback. (2) In Tool-Calling settings, dLLMs fail to maintain symbolic precision (e.g. strict JSON schemas) under diffusion noise. To assess the potential of dLLMs in agentic workflows, we introduce DiffuAgent, a multi-agent evaluation framework that integrates dLLMs as plug-and-play cognitive cores. Our analysis shows that dLLMs are effective in non-causal roles (e.g., memory summarization and tool selection) but require the incorporation of causal, precise, and logically grounded reasoning mechanisms into the denoising process to be viable for agentic tasks.
Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.
We propose Q-learning with Adjoint Matching (QAM), a novel TD-based reinforcement learning (RL) algorithm that tackles a long-standing challenge in continuous-action RL: efficient optimization of an expressive diffusion or flow-matching policy with respect to a parameterized Q-function. Effective optimization requires exploiting the first-order information of the critic, but it is challenging to do so for flow or diffusion policies because direct gradient-based optimization via backpropagation through their multi-step denoising process is numerically unstable. Existing methods work around this either by only using the value and discarding the gradient information, or by relying on approximations that sacrifice policy expressivity or bias the learned policy. QAM sidesteps both of these challenges by leveraging adjoint matching, a recently proposed technique in generative modeling, which transforms the critic's action gradient to form a step-wise objective function that is free from unstable backpropagation, while providing an unbiased, expressive policy at the optimum. Combined with temporal-difference backup for critic learning, QAM consistently outperforms prior approaches on hard, sparse reward tasks in both offline and offline-to-online RL.
Scribble-supervised methods have emerged to mitigate the prohibitive annotation burden in medical image segmentation. However, the inherent sparsity of these annotations introduces significant ambiguity, which results in noisy pseudo-label propagation and hinders the learning of robust anatomical boundaries. To address this challenge, we propose SDT-Net, a novel dual-teacher, single-student framework designed to maximize supervision quality from these weak signals. Our method features a Dynamic Teacher Switching (DTS) module to adaptively select the most reliable teacher. This selected teacher then guides the student via two synergistic mechanisms: high-confidence pseudo-labels, refined by a Pick Reliable Pixels (PRP) mechanism, and multi-level feature alignment, enforced by a Hierarchical Consistency (HiCo) module. Extensive experiments on the ACDC and MSCMRseg datasets demonstrate that SDT-Net achieves state-of-the-art performance, producing more accurate and anatomically plausible segmentation.
Digital traces of daily activities, such as e-commerce (EC) purchase histories, provide scalable signals for public health surveillance, yet their epidemiological validity remains unclear. This study validates a behavioral proxy for disease onset, defined as transitions from regular to therapeutic diets, by comparing large-scale EC data (N=55,645) against independent insurance-derived clinical records. Using feline lower urinary tract disease (FLUTD) as a case study, the proxy showed strong agreement with clinical data for ingredient-level risk patterns (r=0.74) and seasonal dynamics (r=0.82). Furthermore, analysis using EC data alone reproduced the established protective association of wet food consumption. These results demonstrate that validated behavioral signals from EC data can serve as cost-effective complements to traditional surveillance, with potential applicability to monitoring lifestyle-related diseases in human populations.
Reliable human--robot collaboration in emergency scenarios requires autonomous systems that can detect humans, infer navigation goals, and operate safely in dynamic environments. This paper presents HumanDiffusion, a lightweight image-conditioned diffusion planner that generates human-aware navigation trajectories directly from RGB imagery. The system combines YOLO-11 based human detection with diffusion-driven trajectory generation, enabling a quadrotor to approach a target person and deliver medical assistance without relying on prior maps or computationally intensive planning pipelines. Trajectories are predicted in pixel space, ensuring smooth motion and a consistent safety margin around humans. We evaluate HumanDiffusion in simulation and real-world indoor mock-disaster scenarios. On a 300-sample test set, the model achieves a mean squared error of 0.02 in pixel-space trajectory reconstruction. Real-world experiments demonstrate an overall mission success rate of 80% across accident-response and search-and-locate tasks with partial occlusions. These results indicate that human-conditioned diffusion planning offers a practical and robust solution for human-aware UAV navigation in time-critical assistance settings.
Explainable AI (XAI) is frequently positioned as a technical problem of revealing the inner workings of an AI model. This position is affected by unexamined onto-epistemological assumptions: meaning is treated as immanent to the model, the explainer is positioned outside the system, and a causal structure is presumed recoverable through computational techniques. In this paper, we draw on Barad's agential realism to develop an alternative onto-epistemology of XAI. We propose that interpretations are material-discursive performances that emerge from situated entanglements of the AI model with humans, context, and the interpretative apparatus. To develop this position, we read a comprehensive set of XAI methods through agential realism and reveal the assumptions and limitations that underpin several of these methods. We then articulate the framework's ethical dimension and propose design directions for XAI interfaces that support emergent interpretation, using a speculative text-to-music interface as a case study.
Diabetes is a significant and continuously rising health challenge in Indonesia. Although many artificial intelligence (AI)-based health applications have been developed for early detection, most function as "black boxes," lacking transparency in their predictions. Explainable AI (XAI) methods offer a solution, yet their technical outputs are often incomprehensible to non-expert users. This research aims to develop a mobile application front-end that presents XAI-driven diabetes risk analysis in an intuitive, understandable format. Development followed the waterfall methodology, comprising requirements analysis, interface design, implementation, and evaluation. Based on user preference surveys, the application adopts two primary visualization types - bar charts and pie charts - to convey the contribution of each risk factor. These are complemented by personalized textual narratives generated via integration with GPT-4o. The application was developed natively for Android using Kotlin and Jetpack Compose. The resulting prototype interprets SHAP (SHapley Additive exPlanations), a key XAI approach, into accessible graphical visualizations and narratives. Evaluation through user comprehension testing (Likert scale and interviews) and technical functionality testing confirmed the research objectives were met. The combination of visualization and textual narrative effectively enhanced user understanding (average score 4.31/5) and empowered preventive action, supported by a 100% technical testing success rate.
We introduce AfriEconQA, a specialized benchmark dataset for African economic analysis grounded in a comprehensive corpus of 236 World Bank reports. The task of AfriEconQA is to answer complex economic queries that require high-precision numerical reasoning and temporal disambiguation from specialized institutional documents. The dataset consists of 8,937 curated QA instances, rigorously filtered from a pool of 10018 synthetic questions to ensure high-quality evidence-answer alignment. Each instance is composed of: (1) a question requiring reasoning over economic indicators, (2) the corresponding evidence retrieved from the corpus, (3) a verified ground-truth answer, and (4) source metadata (e.g., URL and publication date) to ensure temporal provenance. AfriEconQA is the first benchmark focused specifically on African economic analysis, providing a unique challenge for Information Retrieval (IR) systems, as the data is largely absent from the pretraining corpora of current Large Language Models (LLMs). We operationalize this dataset through an 11-experiment matrix, benchmarking a zero-shot baseline (GPT-5 Mini) against RAG configurations using GPT-4o and Qwen 32B across five distinct embedding and ranking strategies. Our results demonstrate a severe parametric knowledge gap, where zero-shot models fail to answer over 90 percent of queries, and even state-of-the-art RAG pipelines struggle to achieve high precision. This confirms AfriEconQA as a robust and challenging benchmark for the next generation of domain-specific IR and RAG systems. The AfriEconQA dataset and code will be made publicly available upon publication.
Adding memory to pretrained language models typically requires architectural changes or weight modification. We present Prometheus Mind, which retrofits memory to a frozen Qwen3-4B using 11 modular adapters (530MB, 7% overhead) -- fully reversible by removing the adapters. Building this system required solving four problems: (1) Extraction -- we develop Contrastive Direction Discovery (CDD), which finds semantic directions via minimal pairs without labeled data. (2) Training -- end-to-end optimization collapses; stage-wise training of each adapter on simple proxy tasks succeeds. (3) Injection -- learned encoders fail to generalize; we find that lm_head-weight rows already provide the mapping we need, requiring no training. (4) Hidden state collapse -- transformers make ``wife'' and ``brother'' 0.98+ similar; we train projections to recover distinction (0.98 $\rightarrow$ 0.09). On PrometheusExtract-132 (132 cases), the system achieves 94.4% retrieval on clean inputs (n=54, 95% CI: [84.9%, 98.1%]), degrading to 19.4% on informal inputs with ellipsis, filler words, or implicit subjects (n=36). The primary bottleneck is relation classification (47.3% accuracy), responsible for most extraction errors.
It is obvious that emotions are causal variables of motivation, as they elicit states, forces and energies that trigger and guide labor behavior. Thus, a motivational tension that is not informed by needs alone, but also by emotions, intention, goals and means to achieve them is therefore generated within the mental, emotional and physical plane. Based on Montserrat's opinion (2004: 131), that "to motivate means, above all, to move and to transmit an emotion", we will undertake to identify the mutual influences between emotions and motivation. The main objectives of this article are to display a summary of the theories and definitions about emotions and to explore the links between emotions and motivation. Although interconnected, emotions and motivation can be contemplated from a double perspective: (1) emotions influence motivation and (2) motivation influences emotions. Moreover, we will consider motivation from three dimensions: (1) cognitive, (2) affective and (3) volitional. The ultimate purpose of this article is to issue a warning as to the importance of the emotional side of motivation. An important part in implementing such insight is to be played by managers (and by employees, also), who should develop the skills and know-how needed to keep a well-balanced emotional climate that effectively favors the maximization of individual and group motivation at the workplace.
We present a novel system for camera-based measurement and visualization of muscle work based on the Hill-Type-Muscle-Model: the exercise exertion muscle-work monitor (\textit{XEM}$^{2}$). Our aim is to complement and, thus, address issues of established measurement techniques that offer imprecise data for non-uniform movements (burned calories) or provide limited information on strain across different body parts (self-perception scales). We validate the reliability of XEM's measurements through a technical evaluation of ten participants and five exercises. Further, we assess the acceptance, usefulness, benefits, and opportunities of \textit{XEM}$^{2}$ in an empirical user study. Our results show that \textit{XEM}$^{2}$ provides reliable values of muscle work and supports participants in understanding their workout while also providing reliable information about perceived exertion per muscle group. With this paper, we introduce a novel system capable of measuring and visualizing exertion for single muscle groups, which has the potential to improve exercise monitoring to prevent unbalanced workouts.
In this work we introduce three ideas that can further improve particle FRNN physics simulations running on RT Cores; i) a real-time update/rebuild ratio optimizer for the bounding volume hierarchy (BVH) structure, ii) a new RT core use, with two variants, that eliminates the need of a neighbor list and iii) a technique that enables RT cores for FRNN with periodic boundary conditions (BC). Experimental evaluation using the Lennard-Jones FRNN interaction model as a case study shows that the proposed update/rebuild ratio optimizer is capable of adapting to the different dynamics that emerge during a simulation, leading to a RT core pipeline up to $\sim 3.4\times$ faster than with other known approaches to manage the BVH. In terms of simulation step performance, the proposed variants can significantly improve the speedup and energy efficiency (EE) of the base RT core idea; from $\sim1.3\times$ at small radius to $\sim2.0\times$ for log normal radius distributions. Furthermore, the proposed variants manage to simulate cases that would otherwise not fit in memory because of the use of neighbor lists, such as clusters of particles with log normal radius distribution. The proposed RT Core technique to support periodic BC is indeed effective as it does not introduce any significant penalty in performance. In terms of scaling, the proposed methods scale both their performance and EE across GPU generations. Throughout the experimental evaluation, we also identify the simulation cases were regular GPU computation should still be preferred, contributing to the understanding of the strengths and limitations of RT cores.
While Text-to-SQL remains the dominant approach for database interaction, real-world analytics increasingly require the flexibility of general-purpose programming languages such as Python or Pandas to manage file-based data and complex analytical workflows. Despite this growing need, the reliability of Text-to-Python in core data retrieval remains underexplored relative to the mature SQL ecosystem. To address this gap, we introduce BIRD-Python, a benchmark designed for cross-paradigm evaluation. We systematically refined the original dataset to reduce annotation noise and align execution semantics, thereby establishing a consistent and standardized baseline for comparison. Our analysis reveals a fundamental paradigmatic divergence: whereas SQL leverages implicit DBMS behaviors through its declarative structure, Python requires explicit procedural logic, making it highly sensitive to underspecified user intent. To mitigate this challenge, we propose the Logic Completion Framework (LCF), which resolves ambiguity by incorporating latent domain knowledge into the generation process. Experimental results show that (1) performance differences primarily stem from missing domain context rather than inherent limitations in code generation, and (2) when these gaps are addressed, Text-to-Python achieves performance parity with Text-to-SQL. These findings establish Python as a viable foundation for analytical agents-provided that systems effectively ground ambiguous natural language inputs in executable logical specifications. Resources are available at this https URL.
Channel estimation is a fundamental challenge in massive multiple-input multiple-output systems, where estimation accuracy governs the spectral efficiency and link reliability. In this work, we introduce Recursive Flow (RC-Flow), a novel solver that leverages pre-trained flow matching priors to robustly recover channel state information from noisy, under-determined measurements. Different from conventional open-loop generative models, our approach establishes a closed-loop refinement framework via a serial restart mechanism and anchored trajectory rectification. By synergizing flow-consistent prior directions with data-fidelity proximal projections, the proposed RC-Flow achieves robust channel reconstruction and delivers state-of-the-art performance across diverse noise levels, particularly in noise-dominated scenarios. The framework is further augmented by an adaptive dual-scheduling strategy, offering flexible management of the trade-off between convergence speed and reconstruction accuracy. Theoretically, we analyze the Jacobian spectral radius of the recursive operator to prove its global asymptotic stability. Numerical results demonstrate that RC-Flow reduces inference latency by two orders of magnitude while achieving a 2.7 dB performance gain in low signal-to-noise ratio regimes compared to the score-based baseline.
This paper introduces the Generative Application Firewall (GAF), a new architectural layer for securing LLM applications. Existing defenses -- prompt filters, guardrails, and data-masking -- remain fragmented; GAF unifies them into a single enforcement point, much like a WAF coordinates defenses for web traffic, while also covering autonomous agents and their tool interactions.
House allocation is an extremely well-studied problem in the field of fair allocation, where the goal is to assign $n$ houses to $n$ agents while satisfying certain fairness criterion, e.g., envy-freeness. To model social interactions, the Graphical House Allocation framework introduces a social graph $G$, in which each vertex corresponds to an agent, and an edge $(u, v)$ corresponds to the potential of agent $u$ to envy the agent $v$, based on their allocations and valuations. In undirected social graphs, the potential for envy is in both the directions. In the Minimum Envy Graphical House Allocation (ME-GHA) problem, given a set of $n$ agents, $n$ houses, a social graph, and agent's valuation functions, the goal is to find an allocation that minimizes the total envy summed up over all the edges of $G$. Recent work, [Hosseini et al., AAMAS 2023, AAMAS 2024] studied ME-GHA in the regime of polynomial-time algorithms, and designed exact and approximation algorithms, for certain graph classes under identical agent valuations. We initiate the study of \gha with non-identical valuations, a setting that has so far remained unexplored. We investigate the multivariate (parameterized) complexity of \gha by identifying structural restrictions on the social graph and valuation functions that yield tractability. We also design moderately exponential-time algorithms for several graph classes, and a polynomial-time algorithm for {binary valuations that returns an allocation with envy at most one when the social graph has maximum degree at most one.
The development of native computer-use agents (CUA) represents a significant leap in multimodal AI. However, their potential is currently bottlenecked by the constraints of static data scaling. Existing paradigms relying primarily on passive imitation of static datasets struggle to capture the intricate causal dynamics inherent in long-horizon computer tasks. In this work, we introduce EvoCUA, a native computer use agentic model. Unlike static imitation, EvoCUA integrates data generation and policy optimization into a self-sustaining evolutionary cycle. To mitigate data scarcity, we develop a verifiable synthesis engine that autonomously generates diverse tasks coupled with executable validators. To enable large-scale experience acquisition, we design a scalable infrastructure orchestrating tens of thousands of asynchronous sandbox rollouts. Building on these massive trajectories, we propose an iterative evolving learning strategy to efficiently internalize this experience. This mechanism dynamically regulates policy updates by identifying capability boundaries -- reinforcing successful routines while transforming failure trajectories into rich supervision through error analysis and self-correction. Empirical evaluations on the OSWorld benchmark demonstrate that EvoCUA achieves a success rate of 56.7%, establishing a new open-source state-of-the-art. Notably, EvoCUA significantly outperforms the previous best open-source model, OpenCUA-72B (45.0%), and surpasses leading closed-weights models such as UI-TARS-2 (53.1%). Crucially, our results underscore the generalizability of this approach: the evolving paradigm driven by learning from experience yields consistent performance gains across foundation models of varying scales, establishing a robust and scalable path for advancing native agent capabilities.
Diffusion-based language models (DLLMs) offer non-sequential, block-wise generation and richer data reuse compared to autoregressive (AR) models, but existing code DLLMs still lag behind strong AR baselines under comparable budgets. We revisit this setting in a controlled study and introduce Stable-DiffCoder, a block diffusion code model that reuses the Seed-Coder architecture, data, and training pipeline. To enable efficient knowledge learning and stable training, we incorporate a block diffusion continual pretraining (CPT) stage enhanced by a tailored warmup and block-wise clipped noise schedule. Under the same data and architecture, Stable-DiffCoder overall outperforms its AR counterpart on a broad suite of code benchmarks. Moreover, relying only on the CPT and supervised fine-tuning stages, Stable-DiffCoder achieves stronger performance than a wide range of \~8B ARs and DLLMs, demonstrating that diffusion-based training can improve code modeling quality beyond AR training alone. Moreover, diffusion-based any-order modeling improves structured code modeling for editing and reasoning, and through data augmentation, benefits low-resource coding languages.
We study the problem of collision-free humanoid traversal in cluttered indoor scenes, such as hurdling over objects scattered on the floor, crouching under low-hanging obstacles, or squeezing through narrow passages. To achieve this goal, the humanoid needs to map its perception of surrounding obstacles with diverse spatial layouts and geometries to the corresponding traversal skills. However, the lack of an effective representation that captures humanoid-obstacle relationships during collision avoidance makes directly learning such mappings difficult. We therefore propose Humanoid Potential Field (HumanoidPF), which encodes these relationships as collision-free motion directions, significantly facilitating RL-based traversal skill learning. We also find that HumanoidPF exhibits a surprisingly negligible sim-to-real gap as a perceptual representation. To further enable generalizable traversal skills through diverse and challenging cluttered indoor scenes, we further propose a hybrid scene generation method, incorporating crops of realistic 3D indoor scenes and procedurally synthesized obstacles. We successfully transfer our policy to the real world and develop a teleoperation system where users could command the humanoid to traverse in cluttered indoor scenes with just a single click. Extensive experiments are conducted in both simulation and the real world to validate the effectiveness of our method. Demos and code can be found in our website: this https URL.
A class of structures is monadically dependent if one cannot interpret all graphs in colored expansions from the class using a fixed first-order formula. A tree-ordered $\sigma$-structure is the expansion of a $\sigma$-structure with a tree-order. A tree-ordered $\sigma$-structure is weakly sparse if the Gaifman graph of its $\sigma$-reduct excludes some biclique (of a given fixed size) as a subgraph. Tree-ordered weakly sparse graphs are commonly used as tree-models (for example for classes with bounded shrubdepth, structurally bounded expansion, bounded cliquewidth, or bounded twin-width), motivating their study on their own. In this paper, we consider several constructions on tree-ordered structures, such as tree-ordered variants of the Gaifman graph and of the incidence graph, induced and non-induced tree-ordered minors, and generalized fundamental graphs. We provide characterizations of monadically dependent classes of tree-ordered weakly sparse $\sigma$-structures based on each of these constructions, some of them establishing unexpected bridges with sparsity theory. As an application, we prove that a class of tree-ordered weakly sparse structures is monadically dependent if and only if its sparsification is nowhere-dense. Moreover, the sparsification transduction translates boundedness of clique-width and linear clique-width into boundedness of tree-width and path-width. We also prove that first-order model checking is not fixed parameter tractable on independent hereditary classes of tree-ordered weakly sparse graphs (assuming $\mathsf{AW}[*]\neq \mathsf{FPT}$) and give what we believe is the first model-theoretical characterization of classes of graphs excluding a minor, thus opening a new perspective of structural graph theory.
Human motion reconstruction from monocular videos is a fundamental challenge in computer vision, with broad applications in AR/VR, robotics, and digital content creation, but remains challenging under frequent occlusions in real-world settings. Existing regression-based methods are efficient but fragile to missing observations, while optimization- and diffusion-based approaches improve robustness at the cost of slow inference speed and heavy preprocessing steps. To address these limitations, we leverage recent advances in generative masked modeling and present MoRo: Masked Modeling for human motion Recovery under Occlusions. MoRo is an occlusion-robust, end-to-end generative framework that formulates motion reconstruction as a video-conditioned task, and efficiently recover human motion in a consistent global coordinate system from RGB videos. By masked modeling, MoRo naturally handles occlusions while enabling efficient, end-to-end inference. To overcome the scarcity of paired video-motion data, we design a cross-modality learning scheme that learns multi-modal priors from a set of heterogeneous datasets: (i) a trajectory-aware motion prior trained on MoCap datasets, (ii) an image-conditioned pose prior trained on image-pose datasets, capturing diverse per-frame poses, and (iii) a video-conditioned masked transformer that fuses motion and pose priors, finetuned on video-motion datasets to integrate visual cues with motion dynamics for robust inference. Extensive experiments on EgoBody and RICH demonstrate that MoRo substantially outperforms state-of-the-art methods in accuracy and motion realism under occlusions, while performing on-par in non-occluded scenarios. MoRo achieves real-time inference at 70 FPS on a single H200 GPU.
Fine-tuning a task-specific multilingual large language model (LLM) involves training the model on a multilingual dataset with examples in all the required languages. Updating one or more supported languages with additional data or adding support for a new language involves retraining the model, which can be computationally inefficient and creates a severe maintenance bottleneck. Recent research on merging multilingual multitask models has shown promise in terms of improved quality, but its computational and maintenance efficiency remains unstudied. In this work, we provide the first focused analysis of this merging strategy from an efficiency perspective, evaluating it across three independent tasks. We demonstrate significant efficiency gains while maintaining parity in terms of quality: this merging approach reduces the initial training time by up to 50\%. We also demonstrate that updating an individual language and re-merging as part of model maintenance reduces training costs by more than 60\%, compared to re-training the full multilingual model. We show this on both public and proprietary industry datasets confirming that the approach works well for industrial use cases in addition to academic settings already studied in previous work.
Ensuring safety for autonomous systems under uncertainty remains challenging, particularly when safety of the true state is required despite the true state not being fully known. Control barrier functions (CBFs) have become widely adopted as safety filters. However, standard CBF formulations do not explicitly account for state estimation uncertainty and its propagation, especially for stochastic systems evolving on manifolds. In this paper, we propose a safety-critical control framework with a provable bound on the finite-time safety probability for stochastic systems under noisy state information. The proposed framework explicitly incorporates the uncertainty arising from both process and measurement noise, and synthesizes controllers that adapt to the level of uncertainty. The framework admits closed-form solutions in linear settings, and experimental results demonstrate its effectiveness on systems whose state spaces range from Euclidean space to Lie groups.
Genome variants which re-occur independently across evolutionary lineages are key molecular signatures of adaptation. Inferring the dynamics of such genetic changes from pandemic-scale genomic datasets is now possible, which opens up unprecedented insight into evolutionary processes. However, existing approaches depend on the construction of accurate phylogenetic trees, which remains challenging at scale. Here we present EVOtRec, an organism-agnostic, fast and scalable Topological Data Analysis approach that enables the inference of convergently evolving genomic variants over time directly from topological patterns in the dataset, without requiring the construction of a phylogenetic tree. Using data from both simulations and published experiments, we show that EVOtRec can robustly identify variants under positive selection and performs orders of magnitude faster than state-of-the-art phylogeny-based approaches, with comparable results. We apply EVOtRec to three large viral genome datasets: SARS-CoV-2, influenza virus A subtype H5N1 and HIV-1. We identify key convergent genome variants and demonstrate how EVOtRec facilitates the real-time tracking of high fitness variants in large datasets with millions of genomes, including effects modulated by varying genomic backgrounds. We envision our Topological Data Analysis approach as a new framework for efficient comparative genomics.
In the present paper, we formulate two versions of Frank--Wolfe algorithm or conditional gradient method to solve the DC optimization problem with an adaptive step size. The DC objective function consists of two components; the first is thought to be differentiable with a continuous Lipschitz gradient, while the second is only thought to be convex. The second version is based on the first and employs finite differences to approximate the gradient of the first component of the objective function. In contrast to past formulations that used the curvature/Lipschitz-type constant of the objective function, the step size computed does not require any constant associated with the components. For the first version, we established that the algorithm is well-defined of the algorithm and that every limit point of the generated sequence is a stationary point of the problem. We also introduce the class of weak-star-convex functions and show that, despite the fact that these functions are non-convex in general, the rate of convergence of the first version of the algorithm to minimize these functions is ${\cal O}(1/k)$. The finite difference used to approximate the gradient in the second version of the Frank-Wolfe algorithm is computed with the step-size adaptively updated using two previous iterations. Unlike previous applications of finite difference in the Frank-Wolfe algorithm, which provided approximate gradients with absolute error, the one used here provides us with a relative error, simplifying the algorithm analysis. In this case, we show that all limit points of the generated sequence for the second version of the Frank-Wolfe algorithm are stationary points for the problem under consideration, and we establish that the rate of convergence for the duality gap is ${\cal O}(1/\sqrt{k})$.
Classical Markov Chain Monte Carlo methods have been essential for simulating statistical physical systems and have proven well applicable to other systems with many degrees of freedom. Motivated by the statistical physics origins, Chen, Kastoryano, and Gilyén [CKG23] proposed a continuous-time quantum thermodynamic analogue to Glauber dynamics that is (i) exactly detailed balanced, (ii) efficiently implementable, and (iii) quasi-local for geometrically local systems. Physically, their construction resembles the dissipative dynamics arising from weak system-bath interaction. In this work, we give an efficiently implementable discrete-time counterpart to any continuous-time quantum Gibbs sampler. Our construction preserves the desirable features (i)-(iii) while does not decrease the spectral gap. Also, we give an alternative highly coherent quantum generalization of detailed balanced dynamics that resembles another physically derived master equation, and propose a smooth interpolation between this and earlier constructions. Moreover, we show how to make earlier Metropolis-style Gibbs samplers (which estimate energies both before and after jumps) exactly detailed balanced. We study generic properties of all constructions, including the uniqueness of the fixed point, the (quasi-)locality of the resulting operators. Finally, we prove that the spectral gap of our new highly coherent Gibbs sampler is constant at high temperatures, thereby it mixes fast. We hope that our systematic approach to quantum Glauber and Metropolis dynamics will lead to widespread applications in various domains.
It is increasingly common to collect data of multiple different types on the same set of samples. Our focus is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. To address these challenges, we introduce two complementary factor regression models. A baseline Joint Factor Regression (\textsc{jfr}) captures combined variation across views via a single factor set, and a more nuanced Joint Additive FActor Regression (\textsc{jafar}) that decomposes variation into shared and view-specific components. For \textsc{jfr}, we use independent cumulative shrinkage process (\textsc{i-cusp}) priors, while for \textsc{jafar} we develop a dependent version (\textsc{d-cusp}) designed to ensure identifiability of the components. We develop Gibbs samplers that exploit the model structure and accommodate flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (\texttt{R} package) is available at this https URL.
Semiconductor quantum dot (QD) devices have become central to advancements in spin-based quantum computing. However, the increasing complexity of modern QD devices makes calibration and control -- particularly at elevated temperatures -- a bottleneck to progress, highlighting the need for robust and scalable autonomous solutions. A major hurdle arises from trapped charges within the oxide layers, which induce random offset voltage shifts on gate electrodes, with a standard deviation of approximately 83 mV of variation within state-of-the-art present-day devices. Efficient characterization and tuning of large arrays of QD qubits depend on choices of automated protocols. Here, we introduce a physically intuitive framework for a bootstrapping, autonomous testing, and initialization system (BATIS) designed to streamline QD device evaluation and calibration. BATIS navigates high-dimensional gate voltage spaces, automating essential steps such as leakage testing, formation of all current channels, and gate characterization in the presence of trapped charges. For forming the current channels, BATIS follows a non-standard approach that requires a single set of measurements regardless of the number of channels. Demonstrated at 1.3 K on a quad-QD Si/Si$_x$Ge$_{1-x}$ device, BATIS eliminates the need for deep cryogenic environments during initial device diagnostics, significantly enhancing scalability and reducing setup times. By requiring only minimal prior knowledge of the device architecture, BATIS represents a platform-agnostic solution, adaptable to various QD systems, which bridges a critical gap in QD autotuning.
Efficient and scalable decoding of quantum codes is essential for high-performance quantum error correction. In this work, we introduce Reliable Subset Reduction (RSR), a reliability-driven preprocessing framework that leverages belief propagation (BP) statistics to identify and remove highly reliable qubits, substantially reducing the effective problem size. Additionally, we identify a degeneracy condition that allows high-order OSD to be simplified to order-0 OSD. By integrating these techniques, we present an ADOSD algorithm that significantly improves OSD efficiency. Our BP+RSR+ADOSD framework extends naturally to circuit-level noise and can handle large-scale codes with more than $10^4$ error variables. Through extensive simulations, we demonstrate improved performance over MWPM and Localized Statistics Decoding for a variety of CSS and non-CSS codes under the code-capacity noise model, and for rotated surface codes under realistic circuit-level noise. At low physical error rates, RSR reduces the effective problem size to less than 5\%, enabling higher-order OSD with accelerated runtime. These results highlight the practical efficiency and broad applicability of the BP+ADOSD framework for both theoretical and realistic quantum error correction scenarios.
We consider a general model for high-dimensional empirical risk minimization whereby the data $\mathbf{x}_i$ are $d$-dimensional Gaussian vectors, the model is parametrized by $\mathbf{\Theta}\in\mathbb{R}^{d\times k}$, and the loss depends on the data via the projection $\mathbf{\Theta}^\mathsf{T}\mathbf{x}_i$. This setting covers as special cases classical statistics methods (e.g. multinomial regression and other generalized linear models), but also two-layer fully connected neural networks with $k$ hidden neurons. We use the Kac-Rice formula from Gaussian process theory to derive a bound on the expected number of local minima of this empirical risk, under the proportional asymptotics in which $n,d\to\infty$, with $n\asymp d$. Via Markov's inequality, this bound allows to determine the positions of these minimizers (with exponential deviation bounds) and hence derive sharp asymptotics on the estimation and prediction error. As a special case, we apply our characterization to convex losses. We show that our approach is tight and allows to prove previously conjectured results. In addition, we characterize the spectrum of the Hessian at the minimizer. A companion paper applies our general result to non-convex examples.
We develop diffusion models for simulating lattice gauge theories, where stochastic quantization is explicitly incorporated as a physical condition for sampling. We demonstrate the applicability of this novel sampler to U(1) gauge theory in two spacetime dimensions and find that a model trained at a small inverse coupling constant can be extrapolated to larger inverse coupling regions without encountering the topological freezing problem. Additionally, the trained model can be employed to sample configurations on different lattice sizes without requiring further training. The exactness of the generated samples is ensured by incorporating Metropolis-adjusted Langevin dynamics into the generation process. Furthermore, we demonstrate that this approach enables more efficient sampling of topological quantities compared to traditional algorithms such as Hybrid Monte Carlo and Langevin simulations.
We study an online dynamic pricing problem where the potential demand at each time period $t=1,2,\ldots, T$ is stochastic and dependent on the price. However, a perishable inventory is imposed at the beginning of each time $t$, censoring the potential demand if it exceeds the inventory level. To address this problem, we introduce a pricing algorithm based on the optimistic estimates of derivatives. We show that our algorithm achieves $\tilde{O}(\sqrt{T})$ optimal regret even with adversarial inventory series. Our findings advance the state-of-the-art in online decision-making problems with censored feedback, offering a theoretically optimal solution against adversarial observations.
Dynamical systems can be analyzed via their Frobenius-Perron transfer operator and its estimation from data is an active field of research. Recently entropic transfer operators have been introduced to estimate the operator of deterministic systems. The approach is based on the regularizing properties of entropic optimal transport plans. In this article we generalize the method to stochastic and non-stationary systems and give a quantitative convergence analysis of the empirical operator as the available samples increase. We introduce a way to extend the operator's eigenfunctions to previously unseen samples, such that they can be efficiently included into a spectral embedding. The practicality and numerical scalability of the method are demonstrated on a real-world fluid dynamics experiment.
Magnetic resonance imaging (MRI) has played a crucial role in fetal neurodevelopmental research. Structural annotations of MR images are an important step for quantitative analysis of the developing human brain, with Deep Learning providing an automated alternative for this otherwise tedious manual process. However, segmentation performances of Convolutional Neural Networks often suffer from domain shift, where the network fails when applied to subjects that deviate from the distribution with which it is trained on. In this work, we aim to train networks capable of automatically segmenting fetal brain MRIs with a wide range of domain shifts pertaining to differences in subject physiology and acquisition environments, in particular shape-based differences commonly observed in pathological cases. We introduce a novel data-driven train-time sampling strategy that seeks to fully exploit the diversity of a given training dataset to enhance the domain generalizability of the trained networks. We adapted our sampler, together with other existing data augmentation techniques, to the SynthSeg framework, a generator that utilizes domain randomization to generate diverse training data. We ran thorough experimentations and ablation studies on a wide range of training/testing data to test the validity of the approaches. Our networks achieved notable improvements in the segmentation quality on testing subjects with intense anatomical abnormalities (p < 1e-4), though at the cost of a slighter decrease in performance in cases with fewer abnormalities. Our work also lays the foundation for future works on creating and adapting data-driven sampling strategies for other training pipelines.
This study addresses the minor-embedding problem, which involves mapping the variables of an Ising model onto a quantum annealing processor. The primary motivation stems from the observed performance disparity of quantum annealers when solving problems suited to the processor's architecture versus those with non-hardware-native topologies. Our research has two main objectives: i) to analyze the impact of embedding quality on the performance of D-Wave Systems quantum annealers, and ii) to evaluate the quality of the embeddings generated by Minorminer, the standard minor-embedding technique in the quantum annealing literature, provided by D-Wave. Regarding the first objective, our experiments reveal a clear correlation between the average chain length of embeddings and the relative errors of the solutions sampled. This underscores the critical influence of embedding quality on quantum annealing performance. For the second objective, we evaluate Minorminer's embedding capabilities, the quality and robustness of its embeddings, and its execution-time performance on Erdös-Rényi graphs. We also compare its performance with Clique Embedding, another algorithm developed by D-Wave, which is deterministic and designed to embed fully connected Ising models into quantum annealing processors, serving as a worst-case scenario. The results demonstrate that there is significant room for improvement for Minorminer, suggesting that more effective embedding strategies could lead to meaningful gains in quantum annealing performance.
We study the problem of estimating a distribution over a finite alphabet from an i.i.d. sample, with accuracy measured in relative entropy (Kullback-Leibler divergence). While optimal bounds on the expected risk are known, high-probability guarantees remain less well-understood. First, we analyze the classical Laplace (add-one) estimator, obtaining matching upper and lower bounds on its performance and establishing its optimality among confidence-independent estimators. We then characterize the minimax-optimal high-probability risk and show that it is achieved by a simple confidence-dependent smoothing technique. Notably, the optimal non-asymptotic risk incurs an additional logarithmic factor compared to the ideal asymptotic rate. Next, motivated by regimes in which the alphabet size exceeds the sample size, we investigate methods that adapt to the sparsity of the underlying distribution. We introduce an estimator using data-dependent smoothing, for which we establish a high-probability risk bound depending on two effective sparsity parameters. As part of our analysis, we also derive a sharp high-probability upper bound on the missing mass.
We prove that kernel covariance embeddings lead to information-theoretically perfect separation of distinct continuous probability distributions. In statistical terms, we establish that testing for the \emph{equality} of two non-atomic (Borel) probability measures on a locally compact Polish space is \emph{equivalent} to testing for the \emph{singularity} between two centered Gaussian measures on a reproducing kernel Hilbert space. The corresponding Gaussians are defined via the notion of kernel covariance embedding of a probability measure, and the Hilbert space is that generated by the embedding kernel. Distinguishing singular Gaussians is structurally simpler from an information-theoretic perspective than non-parametric two-sample testing, particularly in complex or high-dimensional domains. This is because singular Gaussians are supported on essentially separate and affine subspaces. Our proof leverages the classical Feldman-Hájek dichotomy, and shows that even a small perturbation of a continuous distribution will be maximally magnified through its Gaussian embedding. This ``separation of measure phenomenon'' appears to be a blessing of infinite dimensionality, by means of embedding, with the potential to inform the design of efficient inference tools in considerable generality. The elicitation of this phenomenon also appears to crystallize, in a precise and simple mathematical statement, a core mechanism underpinning the empirical effectiveness of kernel methods.
Information processing abilities of active matter are studied in the reservoir computing (RC) paradigm to infer the future state of a chaotic signal. We uncover an exceptional regime of agent dynamics that has been overlooked previously. It appears robustly optimal for performance under many conditions, thus providing valuable insights into computation with physical systems more generally. The key to forming effective mechanisms for information processing appears in the system's intrinsic relaxation abilities. These are probed without actually enforcing a specific inference goal. The dynamical regime that achieves optimal computation is located just below a critical damping threshold, involving a relaxation with multiple stages, and is readable at the single-particle level. At the many-body level, it yields substrates robustly optimal for RC across varying physical parameters and inference tasks. A system in this regime exhibits a strong diversity of dynamic mechanisms under highly fluctuating driving forces. Correlations of agent dynamics can express a tight relationship between the responding system and the fluctuating forces driving it. As this model is interpretable in physical terms, it facilitates re-framing inquiries regarding learning and unconventional computing with a fresh rationale for many-body physics out of equilibrium.
AI-powered stethoscopes offer a promising alternative for screening rheumatic heart disease (RHD), particularly in regions with limited diagnostic infrastructure. Early detection is vital, yet echocardiography, the gold standard tool, remains largely inaccessible in low-resource settings due to cost and workforce constraints. This review systematically examines machine learning (ML) applications from 2015 to 2025 that analyze electrocardiogram (ECG) and phonocardiogram (PCG) data to support accessible, scalable screening of all RHD variants in relation to the World Heart Federation's "25 by 25" goal to reduce RHD mortality. Using PRISMA-ScR guidelines, 37 peer-reviewed studies were selected from PubMed, IEEE Xplore, Scopus, and Embase. Convolutional neural networks (CNNs) dominate recent efforts, achieving a median accuracy of 97.75%, F1-score of 0.95, and AUROC of 0.89. However, challenges remain: 73% of studies used single-center datasets, 81.1% relied on private data, only 10.8% were externally validated, and none assessed cost-effectiveness. Although 45.9% originated from endemic regions, few addressed demographic diversity or implementation feasibility. These gaps underscore the disconnect between model performance and clinical readiness. Bridging this divide requires standardized benchmark datasets, prospective trials in endemic areas, and broader validation. If these issues are addressed, AI-augmented auscultation could transform cardiovascular diagnostics in underserved populations, thereby aiding early detection. This review also offers practical recommendations for building accessible ML-based RHD screening tools, aiming to close the diagnostic gap in low-resource settings where conventional auscultation may miss up to 90% of cases and echocardiography remains out of reach.
Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
Medical image challenges have played a transformative role in advancing the field, catalyzing innovation and establishing new performance benchmarks. Image registration, a foundational task in neuroimaging, has similarly advanced through the Learn2Reg initiative. Building on this, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark for unsupervised brain MRI registration. Previous challenges relied upon anatomical label maps, however LUMIR provides 4,014 unlabeled T1-weighted MRIs for training, encouraging biologically plausible deformation modeling through self-supervision. Evaluation includes 590 in-domain test subjects and extensive zero-shot tasks across disease populations, imaging protocols, and species. Deep learning methods consistently achieved state-of-the-art performance and produced anatomically plausible, diffeomorphic deformation fields. They outperformed several leading optimization-based methods and remained robust to most domain shifts. These findings highlight the growing maturity of deep learning in neuroimaging registration and its potential to serve as a foundation model for general-purpose medical image registration.
Finding the ground state of strongly-interacting fermionic systems is often the prerequisite for fully understanding both quantum chemistry and condensed matter systems. The Sachdev--Ye--Kitaev (SYK) model is a representative example of such a system; it is particularly interesting not only due to the existence of efficient quantum algorithms preparing approximations to the ground state such as Hastings--O'Donnell (STOC 2022), but also known no-go results for many classical ansatzes in preparing low-energy states. However, this quantum-classical separation is known to \emph{not} persist when the SYK model is sufficiently sparsified, i.e., when terms in the model are discarded with probability $1-p$, where $p=\Theta(1/n^3)$ and $n$ is the system size. This raises the question of how robust the quantum and classical complexities of the SYK model are to sparsification. In this work we initiate the study of the sparse SYK model where $p \in [\Theta(1/n^3),1]$ and show there indeed exists a certain robustness of sparsification. We prove that with high probability, Gaussian states achieve only a $\Theta(1/\sqrt{n})$-factor approximation to the true ground state energy of sparse SYK for all $p\geq\Omega(\log n/n^2)$, and that Gaussian states cannot achieve constant-factor approximations unless $p \leq O(\log^2 n/n^3)$. Additionally, we prove that the quantum algorithm of Hastings--O'Donnell still achieves a constant-factor approximation to the ground state energy when $p\geq\Omega(\log n/n)$. Combined, these show a provable separation between classical algorithms outputting Gaussian states and efficient quantum algorithms for the goal of finding approximate sparse SYK ground states whenever $p \geq \Omega(\log n/n)$, extending the analogous $p=1$ result of Hastings--O'Donnell.
A grand challenge in modern neuroscience is to bridge the gap between the detailed mapping of microscale neural circuits and mechanistic understanding of cognitive functions. While extensive knowledge exists about neuronal connectivity and biophysics, how these low-level phenomena eventually produce abstract behaviors remains largely unresolved. Here, we propose that a framework based on State Space Models, an emerging class of deep learning architectures, can help bridge this gap. We suggest that the differential equations governing elements in a State Space Model are conceptually consistent with the dynamics of biophysical processes, while the model offers a scalable framework to build on the dynamics to produce emergent behaviors observed in experimental neuroscience. We test this framework by training a model employing a diagonal state transition matrix on temporal discrimination tasks with reinforcement learning. Our results suggest that neural behaviors such as time cells naturally emerge from two fundamental principles: optimal pre-configuration and rotational dynamics. These features are shown mathematically to optimize history compression, and naturally generate structured temporal dynamics even prior to training, mirroring recent findings in biological circuits. We show that learning acts primarily as a selection mechanism that fine-tunes these pre-configured oscillatory modes, rather than constructing temporal codes de novo. The model can be readily scaled to abstract cognitive functions such as event counting, supporting the use of State Space Models as a computationally tractable framework for understanding neural activities.
High-fidelity binaural audio synthesis is crucial for immersive listening, but existing methods require extensive computational resources, limiting their edge-device application. To address this, we propose the Lightweight Implicit Neural Network (Lite-INN), a novel two-stage framework. Lite-INN first generates initial estimates using a time-domain warping, which is then refined by an Implicit Binaural Corrector (IBC) module. IBC is an implicit neural network that predicts amplitude and phase corrections directly, resulting in a highly compact model architecture. Experimental results show that Lite-INN achieves statistically comparable perceptual quality to the best-performing baseline model while significantly improving computational efficiency. Compared to the previous state-of-the-art method (NFS), Lite-INN achieves a 72.7% reduction in parameters and requires significantly fewer compute operations (MACs). This demonstrates that our approach effectively addresses the trade-off between synthesis quality and computational efficiency, providing a new solution for high-fidelity edge-device spatial audio applications.
Binaural speech enhancement faces a severe trade-off challenge, where state-of-the-art performance is achieved by computationally intensive architectures, while lightweight solutions often come at the cost of significant performance degradation. To bridge this gap, we propose the Global Adaptive Fourier Network (GAF-Net), a lightweight deep complex network that aims to establish a balance between performance and computational efficiency. The GAF-Net architecture consists of three components. First, a dual-feature encoder combining short-time Fourier transform and gammatone features enhances the robustness of acoustic representation. Second, a channel-independent globally adaptive Fourier modulator efficiently captures long-term temporal dependencies while preserving the spatial cues. Finally, a dynamic gating mechanism is implemented to reduce processing artifacts. Experimental results show that GAF-Net achieves competitive performance, particularly in terms of binaural cues (ILD and IPD error) and objective intelligibility (MBSTOI), with fewer parameters and computational cost. These results confirm that GAF-Net provides a feasible way to achieve high-fidelity binaural processing on resource-constrained devices.
Speech generation models based on large language models (LLMs) typically operate on discrete acoustic codes, which differ fundamentally from text tokens due to their multicodebook structure. At each timestep, models must predict N codebook entries jointly, introducing dependencies that challenge simple parallel prediction approaches. Parallel prediction assumes independence among codebooks, yielding efficient decoding but often at the cost of reduced fidelity. To address this, hierarchical strategies employ a local transformer (LT) to refine predictions and capture intra-timestep dependencies. In this work, we systematically investigate two LT architectures: an autoregressive transformer that generates codebooks sequentially, and a MaskGIT-based transformer that performs iterative masked prediction. Both designs further enable frame stacking, where the primary transformer predicts multiple frames jointly, and the LT decodes their codebooks, offering improvements in speed without compromising perceptual quality. Through extensive analysis, we characterize the tradeoffs between parallel and iterative sampling strategies across different throughput and quality regimes. Finally, we propose practical guidelines for selecting decoding strategies based on deployment priorities such as computational efficiency and synthesis fidelity.
We present GMLv2, a reference-based model designed for the prediction of subjective audio quality as measured by MUSHRA scores. GMLv2 introduces a Beta distribution-based loss to model the listener ratings and incorporates additional neural audio coding (NAC) subjective datasets to extend its generalization and applicability. Extensive evaluations on diverse testset demonstrate that proposed GMLv2 consistently outperforms widely used metrics, such as PEAQ and ViSQOL, both in terms of correlation with subjective scores and in reliably predicting these scores across diverse content types and codec configurations. Consequently, GMLv2 offers a scalable and automated framework for perceptual audio quality evaluation, poised to accelerate research and development in modern audio coding technologies.
Adolescent suicide is a critical global health issue, and speech provides a cost-effective modality for automatic suicide risk detection. Given the vulnerable population, protecting speaker identity is particularly important, as speech itself can reveal personally identifiable information if the data is leaked or maliciously exploited. This work presents the first systematic study of speaker anonymisation for speech-based suicide risk detection. A broad range of anonymisation methods are investigated, including techniques based on traditional signal processing, neural voice conversion, and speech synthesis. A comprehensive evaluation framework is built to assess the trade-off between protecting speaker identity and preserving information essential for suicide risk detection. Results show that combining anonymisation methods that retain complementary information yields detection performance comparable to that of original speech, while achieving protection of speaker identity for vulnerable populations.
Time series foundation models (TSFMs) are increasingly being adopted as highly-capable general-purpose time series representation learners. Although their training corpora are vast, they exclude astronomical time series data. Observations of stars produce peta-scale time series with unique challenges including irregular sampling and heteroskedasticity. We introduce StarEmbed, the first public benchmark for rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time series observations (``light curves''). We benchmark on three scientifically-motivated downstream tasks: unsupervised clustering, supervised classification, and out-of-distribution source detection. StarEmbed integrates a catalog of expert-vetted labels with multi-variate light curves from the Zwicky Transient Facility, yielding ~40k hand-labeled light curves spread across seven astrophysical classes. We evaluate the zero-shot representation capabilities of three TSFMs (MOIRAI, Chronos, Chronos-Bolt) and a domain-specific transformer (Astromer) against handcrafted feature extraction, the long-standing baseline in the astrophysics literature. Our results demonstrate that these TSFMs, especially the Chronos models, which are trained on data completely unlike the astronomical observations, can outperform established astrophysics-specific baselines in some tasks and effectively generalize to entirely new data. In particular, TSFMs deliver state-of-the-art performance on our out-of-distribution source detection benchmark. With the first benchmark of TSFMs on astronomical time series data, we test the limits of their generalization and motivate a paradigm shift in time-domain astronomy from using task-specific, fully supervised pipelines toward adopting generic foundation model representations for the analysis of peta-scale datasets from forthcoming observatories.
We propose a kernel-based nonparametric framework for mean-variance optimization that enables inference on economically motivated shape constraints in finance, including positivity, monotonicity, and convexity. Many central hypotheses in financial econometrics are naturally expressed as shape relations on latent functions (e.g., term premia, CAPM relations, and the pricing kernel), yet enforcing such constraints during estimation can mask economically meaningful violations; our approach therefore separates learning from validation by first estimating an unconstrained solution and then testing shape properties. We establish statistical properties of the regularized sample estimator and derive rigorous guarantees, including asymptotic consistency, a functional central limit theorem, and a finite-sample deviation bound achieving the Monte Carlo rate up to a regularization term. Building on these results, we construct a joint Wald-type statistic to test shape constraints on finite grids. An efficient algorithm based on a pivoted Cholesky factorization yields scalability to large datasets. Numerical studies, including an options-based asset-pricing application, illustrate the usefulness of the proposed method for evaluating monotonicity and convexity restrictions.
We propose a practical hybrid decoding scheme for the parity-encoding architecture. This architecture was first introduced by N. Sourlas as a computational technique for tackling hard optimization problems, especially those modeled by spin systems such as the Ising model and spin glasses, and reinvented by W. Lechner, P. Hauke, and P. Zoller to develop quantum annealing devices. We study the specific model, called the SLHZ model, aiming to achieve a near-term quantum annealing device implemented solely through geometrically local spin interactions. Taking account of the close connection between the SLHZ model and a classical low-density-parity-check code, two approaches can be chosen for the decoding: (1) finding the ground state of a spin Hamiltonian derived from the SLHZ model, which can be achieved via stochastic decoders such as a quantum annealer or a classical Monte Carlo sampler; (2) using deterministic decoding techniques for the classical LDPC code, such as belief propagation and bit-flip decoder. The proposed hybrid approach combines the two approaches by applying bit-flip decoding to the readout of the stochastic decoder based on the SLHZ model. We present simulations demonstrating that this approach can reveal the latent potential of the SLHZ model, realizing soft-annealing concept proposed by Sourlas.
Accurate magnetic resonance imaging (MRI) segmentation is crucial for clinical decision-making, but remains labor-intensive when performed manually. Convolutional neural network (CNN) based methods can be accurate and efficient but often generalize poorly to MRI variable contrast, intensity inhomogeneity, and sequences. Although the transformer-based Segment Anything Model (SAM) has demonstrated remarkable generalizability in natural images, existing adaptations often treat MRI as another imaging modality, overlooking these modality-specific challenges. We present SAMRI, an MRI-specialized SAM trained and validated on 1.1 million labeled MR slices spanning whole-body organs and pathologies. We demonstrate that SAM can be effectively adapted to MRI by fine-tuning its mask decoder using a two-stage strategy, reducing training time by 94 percent and trainable parameters by 96 percent compared to full-model retraining. Across diverse MRI segmentation tasks, SAMRI achieves a mean Dice of 0.87, delivering state-of-the-art accuracy across anatomical regions and robust generalization on unseen structures, particularly small clinically important structures. In addition, we provide a complete training-to-inference pipeline and a user-friendly local graphical interface that enables interactive application of pretrained SAMRI models on standard machines, facilitating practical deployment for real-world MRI segmentation.
We establish strong connections between two fundamental nonlinear 0/1 optimization problems coming from the area of experimental design, namely maximum entropy sampling and 0/1 D-Optimality. The connections are based on maps between instances, and we analyze the behavior of these maps. Using these maps, we transport basic upper-bounding methods between these two problems, and we are able to establish new domination results and other inequalities relating various basic upper bounds. Further, we establish results relating how different branch-and-bound schemes based on these maps compare. Additionally, we observe some surprising numerical results, where bounding methods that did not seem promising in their direct application to real-data MESP instances, are now useful for MESP instances that come from 0/1 D-Optimality.
The resolving ability of widefield fluorescence microscopy is fundamentally limited by out-of-focus background owing to its low axial resolution, particularly for densely labeled biological samples. Although total internal reflection fluorescence (TIRF) microscopy provides strong near-surface sectioning, they are intrinsically restricted to shallow imaging depths. Here we present computational TIRF (cTIRF), a deep learning-based imaging modality that generates TIRF-like sectioned images directly from conventional widefield epifluorescence measurements without any optical modification. By integrating a physics-informed forward model into network training, cTIRF achieves effective background suppression and axial resolution enhancement while maintaining consistency with the measured widefield data. We demonstrate that cTIRF recovers near-surface structures with performance comparable to experimental TIRF, and further enables both single-frame and volumetric sectioned reconstruction in densely labeled samples where conventional TIRF fails. This work establishes cTIRF as a practical and deployable alternative to hardware-based optical sectioning in fluorescence microscopy, enabled by rapid adaptation to new imaging systems with minimal calibration data.
Charging optimization is a key challenge to the implementation of quantum batteries, particularly under inhomogeneity and partial observability. This paper employs reinforcement learning to optimize piecewise-constant charging policies for an inhomogeneous Dicke battery. We systematically compare policies across four observability regimes, from full-state access to experimentally accessible observables (energies of individual two-level systems (TLSs), first-order averages, and second-order correlations). Simulation results demonstrate that full observability yields near-optimal ergotropy with low variability, while under partial observability, access to only single-TLS energies or energies plus first-order averages lags behind the fully observed baseline. However, augmenting partial observations with second-order correlations recovers most of the gap, reaching 94%-98% of the full-state baseline. The learned schedules are nonmyopic, trading temporary plateaus or declines for superior terminal outcomes. These findings highlight a practical route to effective fast-charging protocols under realistic information constraints.
This study aims to introduce the FRQI Pairs method to a wider audience, a novel approach to image classification using Quantum Recurrent Neural Networks (QRNN) with Flexible Representation for Quantum Images (FRQI). The study highlights an innovative approach to use quantum encoded data for an image classification task, suggesting that such quantum-based approaches could significantly reduce the complexity of quantum algorithms. Comparison of the FRQI Pairs method with contemporary techniques underscores the promise of integrating quantum computing principles with neural network architectures for the development of quantum machine learning.
We study variance reduction for score estimation and diffusion-based sampling in settings where the clean (target) score is available or can be approximated. Starting from the Target Score Identity (TSI), which expresses the noisy marginal score as a conditional expectation of the target score under the forward diffusion, we develop: (i) a plug-and-play nonparametric self-normalized importance sampling estimator compatible with standard reverse-time solvers, (ii) a variance-minimizing \emph{state- and time-dependent} blending rule between Tweedie-type and TSI estimators together with an anti-correlation analysis, (iii) a data-only extension based on locally fitted proxy scores, and (iv) a likelihood-tilting extension to Bayesian inverse problems. We also propose a \emph{Critic--Gate} distillation scheme that amortizes the state-dependent blending coefficient into a neural gate. Experiments on synthetic targets and PDE-governed inverse problems demonstrate improved sample quality for a fixed simulation budget.
This paper investigates two fundamental descriptors of data, i.e., density distribution versus mass distribution, in the context of clustering. Density distribution has been the de facto descriptor of data distribution since the introduction of statistics. We show that density distribution has its fundamental limitation -- high-density bias, irrespective of the algorithms used to perform clustering. Existing density-based clustering algorithms have employed different algorithmic means to counter the effect of the high-density bias with some success, but the fundamental limitation of using density distribution remains an obstacle to discovering clusters of arbitrary shapes, sizes and densities. Using the mass distribution as a better foundation, we propose a new algorithm which maximizes the total mass of all clusters, called mass-maximization clustering (MMC). The algorithm can be easily changed to maximize the total density of all clusters in order to examine the fundamental limitation of using density distribution versus mass distribution. The key advantage of the MMC over the density-maximization clustering is that the maximization is conducted without a bias towards dense clusters.